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Abstract

In this paper we consider uniquely pancyclic graphs, ie n vertex graphs

with exactly one cycle of each length from 3 to n.

The first result of the paper gives new upper and lower bounds on

the number of edges in a uniquely pancyclic graph. Next we report on a

computer search for new uniquely pancyclic graphs. We found that there

are no new such graphs on n ≤ 59 vertices and that there are no uniquely

pancyclic graphs with exactly 5 chords.

1 Introduction

A graph G on n vertices is said to be pancyclic if it contains cycles of every length
from 3 to n, [1], and is uniquely pancyclic, abbreviated UPC, if it contains exactly
one cycle of every length from 3 to n. The question of for which n there exists
a UPC graph on n vertices is usually claimed to have been asked by Entringer
in 1973 and has since been well known as one of the 50 unsolved problems
included at the end of Bondy and Murty’s now classic textbook Graph Theory
with Applications [2]. While several of these 50 open problems has been solved
since this book first appeared it is not even known if there are infinitely many
n for which a UPC graph on n vertices exist. In fact it has been conjectured
that there are not, [6].
The simplest UPC graph is of course the complete graph on three vertices,

K3 and a bit of thought let you find the other three graphs in Fig.1 as well,
these are the only UPC graphs with less than nine vertices. In [6] Shi proves
that the four graphs in Fig.1 are the only outerplanar UPC graphs and finds
three further UPC graphs, shown in Fig.2. Shi also proves that these seven
graphs are the only UPC graphs obtainable from a hamiltonian cycle by adding
two, three or four edges. The proof is based on a lengthy case analysis.tt t t tt tt t tt ttt tt t tt tttt t

Figure 1: The first four UPC graphs.
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Figure 2: The UPC graphs on 14 vertices

Between [6] and the current paper there appears to have been no further
progress on this problem. Steven Locke [5] keeps a record of progress on all the
50 problems in [2].
In the present paper we first use an analysis of the graph’s cycle space to

give new significantly improved bounds on the size of a UPC graph of a given
order. These bounds are sharp for the known UPC graphs, and for the case of
UPC graphs with five chords leaves only one possible order.
We then use a computer search in order to first verify that Shi indeed has

found all UPC graphs on at most 14 vertices and all UPC graphs with at most
4 chords. This search is extended to show that there are no UPC graphs except
those in Figure 1 and Figure 2 with at most 59 vertices.

2 Bounding the number of edges

Since a UPC graph G on n vertices must be hamiltonian it can be constructed
by adding chords to a cycle Cn of length n, let k denote the number of chords
added. We say that two chords e1 and e2 cross each other if Cn ∪ e1 ∪ e2 is
a K4-subdivision. Let c denote the number of crossing pairs of chords, let c3
denote the number of unordered triples of pairwise crossing chords. Let c∆ be
the number of unordered triples {e1, e2, e3} of chords such that no pair of chords
ei, ej cross each other and there is a cycle using all three chords.
We will now give an upper and a lower bound for the number of chords in a

UPC graph.

Theorem 2.1. The number of chords k in a UPC graph G satisfy inequality

2.1, and if G has at least 4 chords inequality 2.2 as well:

3 + 2k +

(

k

2

)

+ (k − 1)c− c3 + c∆ ≤ n (1)

log2 (n− 1 + f(k,∆)) + log2

(

4

7

)

≤ k, for k ≥ 4 (2)

with

f(k,∆) =

{

1

24
(8k2 − 32k + 23), for ∆ = 3

2k−27
(

1− 8
7
(1 + ∆ + 1

2

(

∆

2

)

)
)

, for ∆ ≥ 4

Proof. Inequality 1: For inequality 1 we observe that our graph first contains
one hamiltonian cycle, and each chord added determines two cycles by cutting
the hamiltonian cycle into two parts, giving us 1 + 2k cycles.
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Any pair of chords determines at least one cycle, containing both chords,
and if the chords cross each other they determine one further cycle, giving us
another

(

k
2

)

+ c cycles.
Next we will look at cycles using three chords. We get four subcases.

1. A set of three pairwise non-crossing chords. If the three chords are of the
type counted by c∆ they give rise to exactly one cycle, otherwise they do
not give rise to a cycle.

2. Two crossing chords together with a chord not crossing any of the first
two. In this case there is exactly one cycle using all three chords.

3. One chord crossing two other chords which do not cross each other. In
this case there is exactly two cycles using all three chords.

4. Three pairwise crossing chords. In this case there is exactly two cycles
using all three chords.

In case (2) and (3) the number of cycles is the same as the number of crossings
among the three chords used. However in case (4) we use three crossings and get
just two cycles. So by choosing one of the c pairs of crossing chords together with
one of the remaining k−2 chords we always define a cycle. Taking multiplicities
into account we get c(k− 2)− c3 cycles involving three chords and at least one
crossing, and a further c∆ cycles from triples of chords without a crossing.
This adds up to 1 + 2k+

(

k
2

)

+ c+ (k − 2)c− c3 + c∆ cycles and must be at
most n− 2, the number of cycles in a UPC graph.
Inequality 2: To prove inequality 2 we will make use of the cycle space

of our graph. For some basic facts about cycle spaces see e.g. [3]. We first
observe that the cycle space of our graph has dimension k + 1 and thus has
2k+1 elements. Some number a of these elements are even subgraphs which
are not cycles but rather graphs containing vertices even degrees higher than
two and/or several components; for later convenience we will call these graphs
a-graphs. Since our graph has n− 2 cycles and these are members of the cycle
space we must have that

2k+1 − a = n− 2

.
Next we will show that a is at least 2k−2 + 1+ f(k). The “+1” term comes

from the empty graph which is a member of the cycle space and so we focus on
the 2k−2 + f(k) contribution. Given a chord e let Ce be the shorter of the two
cycles formed by adding e to the hamiltonian cycle in G, if they have the same
length Ce can be taken as the cycle containing the edge (1, n).
The proof is now divided into two cases according to the maximum degree

of G.

∆(G) ≥ 4 Let v be a vertex of maximum degree in G. Let A be a subset of the
chordes incident with v of size at least three. The sum of the cycles Ce
for e ∈ A together with the cycles corresponding to any subets set of
the chords not incident with v forms an a-graph, since v will have degree
greater than three. Adding the hamiltonian cycle to this a-graph will give
us yet another a-graph. A subset of size 2 of the chords incident with
v, together with any subets of the chords not incident with v, will give
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an a-graph either directly or after adding the hamiltonian cycle, since the
degree of v in one of these two subgraphs will be at least 4. The number
of nontrivial a-graphs is thus at least

2

(

2∆ − 1− δ −

(

∆

2

))

2k−∆ +

(

∆

2

)

2k−∆ =

= 2k−2 + 2k−27

(

1−
8

7
(1 + ∆+

1

2

(

∆

2

)

)

)

(3)

∆(G) = 3 In this case there will exist a chord e1 such that e1 is the only chord which
is part of the triangle in G, call the triangle Ce1 , and there might be one
further chord e2 which is incident with the third vertex of the triangle.

Next let A be a nonempty subset of the remaining chords and let CA =
∑

e∈A Ce. Now either CA or CA+Ce1+Cn will have two components and

is an a-graph. If there is no edge e2 we will here have another 2
k−1 − 1 =

2k−2 + 2k−2 − 1 a-graphs and we are done. If there is a chord e2 we get
2k−2 a-graphs this way.

We now assume that there is a chord e2. Let n1 be the number of chords
which do not cross e2. Any such chord together with e2 give rise to one
a-graph with two components, and likewise for any pair of such chords.
In the same way they can also combine with both e1 and e2. We thus get
another 2(n1 +

(

n1
2

)

).

Let n2 be the number of chords, apart from e1, which cross e2. Any pair
och such chords will create a two component a-graph which uses both
chords and both of e1 and e2. Let c1 be the number of such pairs of
chords. Any such pair of non crossing chords will create a two component
a-graph which uses neither of e1 and e2. Let c2 be the number of such
pairs of chords. We thus get another c1+ c2 a-graphs, with c1+ c2 =

(

n2
2

)

.

If we minimize the expressions for the number of a-graphs under the con-
straint that n1+n2 = k−2 some simple algebra gives us that the number
of a-graphs is at least

2k−2 +
1

24
(8k2 − 32k + 23).

We thus have that 2k+1 − 2k−2 − 1 − f(k) ≥ n − 2, with f(k) bounded as
promised, and a little algebra gives us 2

We first note that in this proof we mainly made use of the fact that our
graph is hamiltonian and contains a triangle, as well as the number of cycles
and a-graphs in the cycle space, to bound the number of chords and crossings.
However the fact that our graphs are hamiltonian is essential. In [4] Lai has
proven that the maximum number of edges in a graph will no repeated cycle

lengths is asymptotically at least n +
√

n
(

2 + 2
5

)

, which is greater than that

allowed by Inequality 2. In contrast to the UPC graphs, the graphs constructed
by Lai have only cycles of length o(n). To determine the exact value of this
parameter was suggested in 1975 by Erdös, and is another of the open problems
in Bondy and Murty. A natural variation in the current context would be:
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Problem 2.2. Determine the maximum number of edges in a hamiltonian graph

on n vertices with no repeated cycle lengths.

Inequality 1 is sharp for c up to, at least, 3k in the sense that for values of c
in this range there are hamiltonian non-UPC graphs with exactly this number
of cycles, chords, and crossings. The bound is also tight for all of the known
UPC graphs. The methods behind Inequality 2 gives sharp bounds for all the
known UPC-graphs.
As mentioned in the introduction Shi has proven that there are no further

outerplanar UPC graphs and so it is natural to turn our attention to planar
UPC graphs in general. For planar graphs we get that c3 = 0, since three edges
of the kind counted by c3 give rise to a subdivided K3,3 and excluding a K5-
subdivision as a subgraph will further restrict the cycle space. However we have
not found any simple way of excluding further planar UPC graphs.

3 The Computer Search

In order to look for new UPC graphs, and verify the results of Shi regarding UPC
graphs with at most 4 chords, an exhaustive computer search was performed. In
order to reduce the risk for errors I wrote two separate programs to do this, the
first in Mathematica, and the second in Fortran 90. The programs worked by
starting with a cycle on n vertices and then trying to add chords in a way which
did not create repeated cycle lengths. The fortran program also partitioned the
search into parts with given maximum degree of the graphs and given length of
the shortest chord. This partitioning was done in order to be able to use several
computers in the search.
Both programs found all the known UPC graphs and it was also made sure

that they found the same partial UPC graphs for small n. The Mathematica
program was run as far as possible on using several PowerMac computers and
the Fortran 90 program was run on a linux cluster. The Fortran program was
stopped when the individual subcases had reached a run time of several weeks,
on a machine with a 1.66GHz Athlon processor.
The results of the computer search is as follows:

Observation 3.1. The graphs in Fig.1 and Fig.2 are the only UPC graphs on

n ≤ 59 vertices.

Observation 3.2. There are no UPC graphs with the following number of ver-

tices and maximum degrees. 4 ≤ ∆ ≤ 6: n ≤ 60, ∆ = 7: n ≤ 67, ∆ = 8:
n ≤ 75, ∆ = 9: n ≤ 81, ∆ = 10: n ≤ 92, ∆ = 11 . . . 15: n ≤ 100

Observation 3.3. The graphs of Figure 1 and Figure 2 are the only UPC

graphs with at most 5 chords.

Proof. Inequality 2 gives an upper bound of 53 vertices for UPC graphs with at
most 5 chords and any such graphs beyond those already known are ruled out
by 3.1.
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