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Recently the following question was relayed [1] to the second author: What
is the cardinality of the set of vertex transitive graphs of finite degree? Our
aim in this short note is to show that there are 2ℵ0 such graphs. Our proof is
constructive and is based on ideas of B. Neumann [3].
In order to construct a large such set it is natural to turn to Cayley graphs

of finitely generated groups (see e.g [2] for definitions and general facts about
Cayley graphs). In 1937 B. Neumann [3] proved that the set of finitely generated
groups has cardinality 2ℵ0 . However, since Cayley graphs of non-isomorphic
groups can be isomorphic, this alone does not prove that there are the same
number of non-isomorphic Cayley graphs.
We will give two uncountable families of groups and generators for which

one can prove that the corresponding Cayley graphs are non-isomorphic. Our
first family of graphs is based on a variation of the construction of Neumann,
and its members are 4-regular. Our second family consists of cubic graphs, for
which the isomorphism problem requires a bit more work. From these examples
uncountable families of transitive regular graphs of any degree d ≥ 3 can be
constructed as suitable products of our examples with complete, or complete
bipartite, graphs.

Example 1. LetN = (n1, n2 . . .) denote a sequence of numbers and let {σi,j |i =
1, 2 . . . ; j = 1, . . . , ni} be a set of symbols. Now define a permutation group GN ,
acting of the set of symbols, generated by the two permutations:

a = (σ11, σ12 . . . σ1n1)(σ21 . . . σ2n2) . . .

b = (σ11σ12σ13)(σ21σ22σ23) . . .

Let a sequence M be defined by m1 = 8,m2 = 18,mk = 2 +
∏k−1
i=1 (mi/2).

We claim that if N is chosen to be a subsequence of M and G = Cay(N, {a, b})
is the corresponding (undirected, unlabeled) Cayley graph then distinct choices
of N gives us non-isomorphic Cayley graphs.
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In order to prove this let us first note that for t ∈ M , wt = a
−(t−2)bat−2

and b commute if and only if t /∈ N . So if we could identify which edges in
G correspond to a and b respectively, and their orientations, we could identify
the members of N by checking whether the walks wtb and bwt end at the same
vertex.
Now, by our choice ofM , the only triangles in G correspond to three consec-

utive b-edges, and so we can partition the edge-set of G into triangles of b-edges
and infinite paths of a-edges. The orientation is harder to reconstruct, but we
do not actually need to know the orientation in order to identify whether t is
in N or not. Indeed, Given that we know the labels of the edges, there are 16
different paths in G which can correspond to wtb, one for each choice of signs in
the exponents, and likewise for bwt. If t ∈ N then all these paths have distinct
endpoints, and if t /∈ N some of them will have the same endpoints. We can
thus distinguish between the two alternatives of t ∈ N and t /∈ N .
So we have found an uncountable family of non-isomorphic 4-regular vertex-

transitive graphs. From a result of [3] the underlying groups are also distinct,
although this was not used in our proof.

Example 2. Let us define c = (σ11σ12)(σ21σ22) . . . and let us consider the
family G = Cay(N, {a, c}) for N chosen as in Example 1.
As before we want to determine the labels and orientations of the edges of

G; then we can, as in the first example, identify the members of N . We observe1

that the only two kinds of cycles of length 12 in G are those given by (a−2ca2c)2

or (a−1cac)3. This lets us identify the c-edges as those edges e for which each
edge adjacent with e at a given vertex is part of a 12-cycle containing e. This
let us partition the edges into a 1-factor of c-edges and infinite paths of a-edges.
The orientation of the a-paths can be inferred in the same way as earlier by
using that c and a2ca−2 commute.
We mention that this family consists of bipartite graphs, since a has infinite

order and the sign of a walk with the same number of a and a−1 is given by
the number of c’s, so any cycle through the identity element must have even
length. These graphs also have a 2-factor given by deleting the a-edges, each
component of which is an infinite path, and are 3-edge colourable. In this case
we do not know whether or not the underlying groups are distinct.
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1Exhausting handwork or simple computer check
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