Uncountable families of vertex-transitive graphs
of finite degree

Imre Leader*and Klas Markstréom®

August 2, 2005

Recently the following question was relayed [1] to the second author: What
is the cardinality of the set of vertex transitive graphs of finite degree? Our
aim in this short note is to show that there are 2% such graphs. Our proof is
constructive and is based on ideas of B. Neumann [3].

In order to construct a large such set it is natural to turn to Cayley graphs
of finitely generated groups (see e.g [2] for definitions and general facts about
Cayley graphs). In 1937 B. Neumann [3] proved that the set of finitely generated
groups has cardinality 2%¢. However, since Cayley graphs of non-isomorphic
groups can be isomorphic, this alone does not prove that there are the same
number of non-isomorphic Cayley graphs.

We will give two uncountable families of groups and generators for which
one can prove that the corresponding Cayley graphs are non-isomorphic. Our
first family of graphs is based on a variation of the construction of Neumann,
and its members are 4-regular. Our second family consists of cubic graphs, for
which the isomorphism problem requires a bit more work. From these examples
uncountable families of transitive regular graphs of any degree d > 3 can be
constructed as suitable products of our examples with complete, or complete
bipartite, graphs.

Example 1. Let N = (n1,ns . ..) denote a sequence of numbers and let {o; ;|i =
1,2...;5=1,...,n;} be a set of symbols. Now define a permutation group Gy,
acting of the set of symbols, generated by the two permutations:

a = (0'11,0'12...0'1n1)(0'21...0'2712)...

b = (011012013)(021022023) cee

Let a sequence M be defined by my = 8,mgy = 18, my, = 2 + Hf;ll (m;/2).
We claim that if NV is chosen to be a subsequence of M and G = Cay(N, {a, b})
is the corresponding (undirected, unlabeled) Cayley graph then distinct choices
of N gives us non-isomorphic Cayley graphs.
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In order to prove this let us first note that for t € M, wy = a~¢=2ba?—2
and b commute if and only if ¢ ¢ N. So if we could identify which edges in
G correspond to a and b respectively, and their orientations, we could identify
the members of N by checking whether the walks w;b and bw; end at the same
vertex.

Now, by our choice of M, the only triangles in G correspond to three consec-
utive b-edges, and so we can partition the edge-set of G into triangles of b-edges
and infinite paths of a-edges. The orientation is harder to reconstruct, but we
do not actually need to know the orientation in order to identify whether ¢ is
in N or not. Indeed, Given that we know the labels of the edges, there are 16
different paths in G which can correspond to w;b, one for each choice of signs in
the exponents, and likewise for bw,. If ¢ € N then all these paths have distinct
endpoints, and if ¢ ¢ N some of them will have the same endpoints. We can
thus distinguish between the two alternatives of t € N and ¢ ¢ N.

So we have found an uncountable family of non-isomorphic 4-regular vertex-
transitive graphs. From a result of [3] the underlying groups are also distinct,
although this was not used in our proof.

Example 2. Let us define ¢ = (011012)(021022) ... and let us consider the
family G = Cay(N, {a,c}) for N chosen as in Example 1.

As before we want to determine the labels and orientations of the edges of
G; then we can, as in the first example, identify the members of N. We observe!
that the only two kinds of cycles of length 12 in G are those given by (a~2ca®c)?
or (a~lcac)®. This lets us identify the c-edges as those edges e for which each
edge adjacent with e at a given vertex is part of a 12-cycle containing e. This
let us partition the edges into a 1-factor of c-edges and infinite paths of a-edges.
The orientation of the a-paths can be inferred in the same way as earlier by
using that ¢ and a%ca™2 commute.

We mention that this family consists of bipartite graphs, since a has infinite
order and the sign of a walk with the same number of @ and a™! is given by
the number of ¢’s, so any cycle through the identity element must have even
length. These graphs also have a 2-factor given by deleting the a-edges, each
component of which is an infinite path, and are 3-edge colourable. In this case
we do not know whether or not the underlying groups are distinct.
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