
Fast multiplication of matrices over a finitely1

generated semiring2

Daniel Andrén, Lars Hellström, and Klas Markström3

Abstract. In this paper we show that n × n matrices with entries
from a semiring R which is generated additively by q generators can
be multiplied in time O

(

q2nω
)

, where nω is the complexity for matrix
multiplication over a ring (Strassen: ω < 2.807, Coppersmith and
Winograd: ω < 2.376).
We first present a combinatorial matrix multiplication algorithm

for the case of semirings with q elements, with complexityO
(

n3/ log2q n
)

,
matching the best known methods in this class.
Next we show how the ideas used can be combined with those of

the fastest known boolean matrix multiplication algorithms to give an
O
(

q2nω
)

algorithm for matrices of, not necessarily finite, semirings
with q additive generators.
For finite semirings our combinatorial algorithm is simple enough

to be a practical algorithm and is expected to be faster than the
O
(

q2nω
)

algorithm for matrices of practically relevant sizes.

1. Introduction4

Ever since the advent of Strassen’s fast matrix multiplication method5

[Str69] there has been an active search for new fast matrix multiplica-6

tion methods. Most of this work have focused on bilinear methods of7

the same general type as Strassen’s method, see [BCS97] for a thorough8

survey of these methods. Methods of this type usually require that the9

elements of the matrices have additive inverses and are therefore naturally10

restricted to matrices with elements from a ring.11

Another line of investigation has focused on so-called Boolean matrix12

multiplication, where the matrices have Boolean values as elements and13

multiplication and addition are replaced by ∧ (logical and) and ∨ (logical14

or) respectively. Here we are no longer dealing with a ring but only15

a semiring, which is the more general algebraic structure obtained by16

Key words and phrases. matrix multiplication, semiring.

1



no longer requiring the existence of additive inverses in the definition of17

a ring. This and other semirings appears naturally in some important18

applications such as the study of formal languages, see e.g. [Goo99]. For19

this problem, fast matrix multiplication methods fall into two categories:20

on one hand those which do a reduction to integer matrices and then21

employ a bilinear method, such as Strassen’s O
(
nlog2 7

)
method, for the22

new matrix, and on the other hand combinatorial methods which work23

within the Boolean semiring itself.24

The first sub-cubic method of the latter class of algorithms was given in25

[ADKF70], requiring O
(
n3/ log n

)
operations for an n×n-matrix and has26

over the years been improved in various ways. Here we can mention [AS88]27

which improves the complexity to O
(
n3/ log1.5 n

)
with a quite simple al-28

gorithm and [Ryt85] which gives the asymptotically fastest known method29

with a complexity of O
(
n3/ log2 n

)
. The last method is quite complicated30

and has not been considered to be practical. Rytter’s method is also some-31

what roundabout in that it is really a method for recognition of context32

free languages; as shown by [Val75, Lee02] boolean matrix multiplication33

and parsing of context free languages have mutually dependent complex-34

ities.35

In [RH88] the reduction to integer matrices was extended from boolean36

matrices to matrices with entries from a semiring with q elements. In37

this algorithm the problem is reduced to multiplying q2 pairs of integer38

0/1-matrices.39

In this paper we will present two algorithms for multiplication of matrices40

with elements from any finite semiring R. The first algorithm is a com-41

binatorial method which is simpler than Rytter’s method, but achieves42

the same complexity, O
(
n3/ log2q n

)
, where q is the size of the semiring.43

Next we give a multilinear algorithm which combines some of the ideas44

from the combinatorial algorithm with fast multiplication of matrices with45

elements from a ring. This algorithm works for semirings with q addit-46

ive generators, i.e. every element can be written as a linear combination47

of some set of q elements from the semiring. The running time of the al-48

gorithm isO
(
q2nω

)
, where ω is the exponent for matrix multiplication over49

a ring. Standard matrix multiplication gives ω 6 3 and Strassen [Str69]50

showed that it can be lowered to ω < 2.807, with a practical method. Cop-51

persmith and Winograd [CW90] hold the current record with the upper52

bound ω < 2.376. For finite semirings in which addition is idempotent our53

multilinear algorithm is formally equivalent to the algorithm from [RH88].54

2



2. The combinatorial algorithm55

2.1. The problem. We want to multiply two n × n matrices A and B
with entries from a finite semiring R with q elements. We assume that
we can do the semiring operations of addition and multiplication in O(1)
time (i.e. independent of n, but may be dependent on q). In addition
we also assume that we can compute an integer multiple s 6 n of any
semiring element (i.e., the sum of s identical terms) in time O(1). This
can, using the identity

a+ · · ·+ a
︸ ︷︷ ︸

s terms

= (1 · a) + · · ·+ (1 · a)
︸ ︷︷ ︸

s terms

= (1 + · · ·+ 1
︸ ︷︷ ︸

s terms

) · a,

be done by precomputing a table of the integer multiples 6 n of the56

semiring unit 1 and then use a table lookup together with a semiring57

multiplication to calculate the multiple in constant time.58

We also assume that table lookups can be made in time O(1) and that59

matrices can be indexed without problem. The last assumption is realistic60

as long as the word length of the computer used is of order Θ(logn).61

2.2. The algorithm. To multiply the n×n matrix A by the n×n matrix62

B we begin by blocking the rows of A k at a time and likewise with the63

columns of B so we have n/k block-rows Ai of type [k × n] of A and64

n/k block-columns Bj of type [n × k] of B. We then proceed by doing65

n2/k2 block-multiplications AiBj of type [k × n][n × k]. By doing these66

multiplications in O(n) time we get an O
(
n3/k2

)
matrix multiplication67

algorithm.68

One way to compute the product AiBj is to sum up the n products
aiℓbℓj of type [k × 1][1× k], i.e., each aiℓ is the ℓth column (of length k)
from Ai and each bℓj is the ℓth row (of length k) from Bj;

AiBj =

n∑

ℓ=1

aiℓbℓj .

We now observe that if we choose k well we have fewer than n different
aiℓbℓj-products, henceforth (a,b)-products, so if we instead count the
number of times each distinct (a,b)-product occurs in the sum, we can
compute the product ab once and then take a weighted sum (according
to the number of occurrences of each (a,b)-product) as the answer.

AiBj =
∑

a,b∈Rk

s(a,b)ab where s(a,b) =
∣
∣
∣

{
ℓ ∈ [n]

∣
∣ aiℓ = a,bℓj = b

}
∣
∣
∣

3



Thus we proceed by first counting the number of occurrences of each69

pair (a,b), where a and b are k-vectors of semiring elements, among70

the (a,b)-products. The counting can be done by first creating a 2-71

dimensional array of integers, indexed by a and a, with each entry initial-72

ized to 0. Next we scan through our two block column and increase the73

entry corresponding to each pair (a,b) as they are encountered. This will74

take time O(n) since we have n (a,b)-products in a block-product. Next75

we form all possible products of pairs of k-vectors and finally we add the76

correct multiple of each product to the final sum.77

Since the total length of an (a,b)-pair is 2k there are at most q2k78

different pairs. To multiply one pair and add the weighted product to79

the result we need O
(
k2
)
semiring operations. This gives us a total of80

O
(
k2q2k

)
operations, so if we can choose k such that this is O(n) we have81

our algorithm.82

If we choose k ∼ 1
2
logq n− logq logq n we get

k2q2k ∼
(
1
2
logq n− logq logq n

)2
qlogq n−2 logq logq n =

(
1
4
log2q n− logq n logq logq n+ (logq logq n)2

) n

log2q n
=

n

4

(

1− 4
logq logq n

logq n
+ 4

(
logq logq n

logq n

)2
)

= O(n)

and this gives us our O
(
n3

log2q n

)

algorithm.83

2.3. Preprocessing optimisations. The part of this algorithm which84

complexity-wise is most critical is that of counting (a,b)-products, so the85

way this may be done in O(n) time warrants an explanation. If each86

k-vector aiℓ or bℓj was to be read from memory as k separate elements87

then these memory accesses alone would constitute O(nk) operations and88

render the total complexity O
(
n3/ logq n

)
rather than O

(
n3/ log2q n

)
. The89

vectors aiℓ and bℓj must instead be encoded so that they fit into individual90

machine words, so that each can be read in O(1) time. This is not as91

difficult as it may sound at first, because the above choice of k makes92
∣
∣Rk

∣
∣ <
√
n; any word large enough to hold a row or column index can93

comfortably encode even a pair of k-vectors. As the reencoding of A and94

the reencoding of B can be carried out independently of each other, the95

total time it takes is no more than O
(
n2
)
, and this preprocessing is thus96

dominated by the main step in the algorithm.97

4



The preprocessing required to determine the integer multiples of the98

semigroup unit merely consists of n semiring additions, so this O(n) step99

is similarly dominated by the main step in the algorithm.100

If any of the matrices are known to be sparse an additional preprocessing101

step can be added, where for each block row and block column we record102

the indices of non-zero subrow and subcolumns. Using this information103

we make sure that we only consider (a,b)-products which are non-zero,104

thereby reducing the complexity according to the degree of sparsity.105

3. The multilinear algorithm106

3.1. The problem. We want to multiply two n × n matrices A and107

B with entries from an additively finitely generated semiring R with q108

additive generators.109

Definition 3.1. A semiring R is additively finitely generated if there110

exists a set S = {s1, . . . , sq} ⊆ R such that every element z ∈ R can be111

written as z =
∑

i aisi, where the ai belongs to some ring Rc.112

Note that this does not mean that every linear combination of elements113

from S gives an element from R. We assume that multiplication of the114

additive generators has been specified as sisj =
∑

k ǫkijsk.115

The simplest example of a semiring with a finite number of additive116

generators is of course the natural numbers N. Any infinite, additively117

idempotent semiring will require an infinite number of additive generators.118

Here a natural example is the tropical semiring over R, using max as119

addition and + as multiplication.120

We assume that we can do the semiring operations of addition and121

multiplication in O(1) time (i.e. independent of n, but may be dependent122

on q).123

3.2. The algorithm. The fastest known method for boolean matrix124

multiplication is based on a reduction to integer matrices, see e.g. [CLRS01]125

for a textbook treatment. The basic idea is that given two boolean126

matrices A and B we interpret the boolean values 0 and 1 as integers,127

use a fast integer matrix multiplication method to compute C ′ = AB,128

and finally replace all non-zero entries of C ′ by 1 to get a matrix C which129

is the boolean matrix product of A and B. In [RH88] this approach is130

also extended to show that for a finite semiring with q elements mat-131

rix multiplication be reduced to the multiplication of q2 pairs of integer132

matrices.133

5



With our combinatorial method in mind we can interpret C ′ij as simply134

counting the number of products AiℓBℓj which give a non-zero contribu-135

tion to Cij , and the final step in going from C
′ to C as simply performing136

the semiring sum of those products. This point of view lends itself to137

immediate generalisation for more general semirings.138

A rough outline of our algorithm will be139

(1) Given matrices A and B we create two auxiliary matrices A′ and140

B′. If position (i, j) in A is r =
∑

i aisi we will set the same141

position in A′ to
∑

k akxsk , where xsk is a formal variable, and B
′

142

is constructed in the same way from B.143

(2) Compute A′B′ = C ′ using a fast multilinear algorithm. This will144

be possible since the elements in A′ and B′ belong to a ring. In145

fact they will be low degree polynomials.146

(3) Construct the matrix C = AB by transforming the polynomials147

at the entries of C ′ into elements of the semiring.148

Let us now fill in the details of this outline.149

To evaluate the multiplication AB = C of two n × n matrices A and150

B over a finitely generated semiring R with q generators we start by151

mapping the entries of the matrices to a semigroup algebra Rc[R]; in152

other words we map a semiring element r =
∑

i aisi ∈ R to the element153
∑

k akxsk ∈ Rc[R]. The basis elements xsk of the algebra are multiplied154

according to the rule xsixsj =
∑
ǫkijxsk . Addition in Rc[R] is however155

strictly the addition of an Rc-module; the addition of R is not used in the156

definition of Rc[R].157

Let A′ and B′ be the matrices where we have sent the elements aij and
bij from A and B respectively to xaij and xbij . The product C

′ = A′B′

will contain formal polynomials of the form

c′ij =
∑

r∈S

dijrxr.

These polynomials will count the number of times r ∈ R occurs in the sum158

that make up the position cij in C. We can evaluate these polynomials159

in the semiring by mapping the xr back to r ∈ R. This will take q160

multiplications and q− 1 additions for each cij , in total O
(
qn2
)
algebraic161

operations.162

The product A′B′ = C ′ is computed with matrices over the semigroup163

algebraRc[R], which in particular is also a ring, so we can use a fast matrix164

multiplication algorithm, such as Strassen’s method, and only do O(nω)165

ring operations. These operations will be addition and multiplication in166

6



Rc[R], each of which can trivially be carried out in O
(
q2
)
operations in R167

and Rc (although it may be possible to lower this exponent for particular168

cases of R). This gives us an algorithm that will perform the product169

A′B′ = C ′ in O
(
q2nω

)
algebraic operations. Since forming C ′ will be the170

dominant contribution to the complexity we have an O
(
q2nω

)
algorithm171

for matrix multiplication over a finitely generated semiring.172

4. Comparing the two methods for finite semirings173

A disadvantage of the multilinear matrix multiplication method, as com-174

pared to the combinatorial method, is that it needs more memory. While175

the combinatorial method can be carried out in an amount of memory176

that is bounded by a universal constant multiple of the input data size,177

the matrices over the ring Rc[R] in the integer method contain qn2 in-178

tegers and can thus be expected to require q times as much memory as179

the input data did. This q is still a constant as far as the asymptotics are180

concerned, but it varies with R and should be taken into account when181

choosing between the methods.182

Further, if we ignore the constants in the O-notation we see that the183

multilinear method will be faster than the combinatorial methods when184

nω < n3

log2q n
. If we take q = 2 and compare the two methods when185

Strassen’s method is used in the multilinear algorithm we find that the186

combinatorial method has the advantage for n < 259. With the bound187

for ω given by Coppersmith and Winograd this is reduced to n < 211. In188

both cases we have ignored multiplicative constants but given the size of189

the constants involved it is safe to say that in a practical implementation,190

for small q, the combinatorial method will be faster unless n is very large.191

References192

[ADKF70] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradžev. The193

economical construction of the transitive closure of an oriented graph. Dokl.194

Akad. Nauk SSSR, 194:487–488, 1970.195

[AS88] Michael D. Atkinson and N. Santoro. A practical algorithm for Boolean196

matrix multiplication. Inform. Process. Lett., 29(1):37–38, 1988.197

[BCS97] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic198

complexity theory, volume 315 of Grundlehren der Mathematischen Wis-199

senschaften [Fundamental Principles of Mathematical Sciences]. Springer-200

Verlag, Berlin, 1997. With the collaboration of Thomas Lickteig.201

7



[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford202

Stein. Introduction to algorithms. MIT Press, Cambridge, MA, second edi-203

tion, 2001.204

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-205

metic progressions. J. Symbolic Comput., 9(3):251–280, 1990.206

[Goo99] Joshua Goodman. Semiring parsing. Comput. Linguist., 25(4):573–605,207

1999.208

[Lee02] Lillian Lee. Fast context-free grammar parsing requires fast Boolean matrix209

multiplication. Journal of the ACM, 49(1):1–15, 2002.210

[RH88] Daniel J. Rosenkrantz and Harry B. Hunt, III. Matrix multiplication for211

finite algebraic systems. Inform. Process. Lett., 28(4):189–192, 1988.212

[Ryt85] Wojciech Rytter. Fast recognition of pushdown automaton and context-free213

languages. Inform. and Control, 67(1-3):12–22, 1985.214

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–215

356, 1969.216

[Val75] Leslie G. Valiant. General context-free recognition in less than cubic time.217

J. Comput. System Sci., 10:308–315, 1975.218

Department of Mathematics, Ume̊a University, SE-901 87 Ume̊a, Sweden219

E-mail address: Daniel.Andren@math.umu.se220

E-mail address: Lars.Hellstrom@residenset.net221

E-mail address: Klas.Markstrom@math.umu.se222

8


