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In this paper we investigate the nature of the singularity of the Ising model of the 4-dimensional
cubic lattice. It is rigorously known that the specific heat has critical exponent α = 0 but a non-
rigorous field-theory argument predicts an unbounded specific heat with a logarithmic singularity
at Tc.
We find that within the given accuracy the canonical ensemble data is consistent both with a

logarithmic singularity and a bounded specific heat, but that the micro-canonical ensemble lends
stronger support to a bounded specific heat.
Our conclusion is that either much larger system sizes are needed for Monte Carlo studies of this

model in four dimensions or the field theory prediction of a logarithmic singularity is wrong.

I. INTRODUCTION

In dimension D ≥ 5 it is known from [1, 2] that the
Ising model on the cubic lattice exhibits mean-field crit-
ical exponents at the critical temperature. Even earlier
it was shown [3] that the specific heat obeys the mean-
field exponent α = 0 for D ≥ 4, and that for D ≥ 5 the
specific heat is in fact bounded at the critical point. For
D = 4 the rigorous results which determine that α = 0
are not strong enough to show that the specific heat is
bounded. In fact methods from field and renormaliza-
tion theory predict that the specific heat should diverge
as (log |T−Tc|)1/3 but this has not been possible to prove
rigorously. There are thus, at least, two possibilities here,
either the specific heat is bounded in D = 4 as well or it
diverges logarithmically.
Earlier studies of the critical behaviour in 4-dimensions
include [4–6], using Monte Carlo methods, and [7], using
series expansion and extrapolation. There has also been
some recent controversy [8–10] regarding the consistency
of field theoretical predictions and Monte Carlo data.
Using a standard Monte Carlo approach to detect a di-
vergence of the form (log |T −Tc|)1/3 is difficult since the
quantity will remain quite small for a large range of the
lattice size L, thereby making it difficult to use sampled
data to clearly distinguish between different asymptotic
behaviours.
In an attempt to get around this problem we have in-
stead studied the microcanonical density of states of the
model, following the methods used in e.g. [11, 12]. The
finite-size effects of the canonical ensemble have two com-
ponents; that coming from the fact that only a certain
discrete set of energies are available in finite discrete sys-
tems, and that coming from finite-size effects of the dens-
ity of states. The microcanonical ensemble is affected by
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only the latter effect.
A divergence in the specific heat means that the second
derivative of the density of states must become 0 at the
critical point. The surprising simulation result is that
this value is in fact increasing with the lattice size at
the critical point and the best fit to the data is that
it converges to a non-zero value, thereby also giving a
bounded specific heat in the limit.
In order to make sure that this was not an artifact
caused by our simulation software we wrote two separ-
ate programs, one for the Metropolis algorithm and one
using the Wolff-cluster algorithm [13], to sample at inter-
leaving lattice sizes, but no systematic differences could
be seen. We also tried to push the simulations to large
lattices, reaching L = 80. Our simulations give estim-
ates for the critical exponents which agree well with the
rigorous mean-field values and a value for the critical
temperature which agrees well with earlier studies.
Hence our conclusion is that either lattice sizes larger
than L = 80 are needed to see the asymptotic behaviour
of the specific heat or the specific heat is in fact bounded
at the critical point. Finding a way to settle this issue is
of prime importance since, as discussed in e.g. [10], this
would have consequences for the renormalization tech-
niques used to bound the Higgs mass.

II. NOTATION AND BASIC DEFINITIONS

The lattice studied here is the cartesian graph product
of four L-cycles, that is, an L × L × L × L-lattice with
periodic boundary conditions on n = L4 vertices and
m = 4L4 edges. We have collected sampled data us-
ing the sampling scheme described in [11] for linear or-
ders: L = 4, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 56, 60, 64, 80.
For most orders we used the Metropolis single-spin flip
method with measurements of local energies after every
sweep. Since the flip-rate near the critical temperat-
ure is about 63% there will be no strong dependency
between measurements of local energies. For comparison
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we also employed the Wolff-cluster method for the cases
L = 10, 20, 40, 60, flipping clusters until an expected L4

spins were flipped.
The energy E of a state σ = (σ1, . . . , σn), with σi =
±1, is defined as E(σ) =

∑

{i,j} σi σj , with the sum taken

over all the edges {i, j}, and the magnetisation M is
defined as M(σ) =

∑

i σi with the sum taken over all
the vertices.
We have two classes of quantities. First the combinat-
orial quantities from the microcanonical ensemble which
depend on the energy U . Especially the coupling K
is of interest here, defined as K(U) = −∂S/∂U where
S(U) = (log a(E))/n for U = E/n and a(E) denotes the
number of states σ at energy E. How to obtain the coup-
ling from sampled data is described in detail in [11] and
error estimation in [14].
The canonical, or physical, quantities are obtained as
cumulants, or derivatives of logZ(K,H) with respect to
K or H (the external field), where Z is the partition
function. All quantities are measured with the external
field switched off, ie H = 0 after the relevant derivative
is taken.
At this point we introduce the notation ci =
〈

(X − 〈X〉)i
〉

for the ith central moment of a random
variable X, where 〈X〉 is the mean value. The kth cumu-
lant of E is then the kth derivative of logZ with respect
to K, where Z is the partition function. Recall that the
first cumulant is 〈X〉, the second is c2(X) = Var (X),
the third is c3(X) and the fourth is c4(X) − 3 c22(X).
The internal energy is then U(K) = 〈E〉 /n and the
specific heat is C(K) = Var (E) /n. Note also that
the susceptibility χ = Var (M) /n =

〈

M2
〉

/n has no
local maximum, whereas the (spontaneous) susceptibil-
ity χ̄ = Var (|M |) /n does. Analogously we define the
magnetisation as µ = 〈M〉 /n and the spontaneous mag-
netisation as µ̄ = 〈|M |〉 /n.

III. PHYSICAL QUANTITIES

Let us begin by showing some plots of a few physical
quantities near the critical coupling. Figure 1 shows the
magnetisation µ̄(K). In Figure 2 we show the specific
heat C(K) for several lattice sizes.

A. Critical points and exponents

First we establish a high-precision estimate of the crit-
ical coupling Kc. This is done by determining the critical
points for a number of different quantities, listed below,
for each system size. The critical points in question are,
with one exception, the locations of various maxima or
minima of eg cumulants. To these points we fitted a
simple scaling law of the form c0 + c1 L

−λ. By selecting
points for L ≥ Lmin for different Lmin we can then obtain
several (for Lmin = 24, 32, 40, with a few exceptions) dif-
ferent estimates of the fitting parameters. As a rule we
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FIG. 1: Magnetisation µ̄(K) for lattice sizes L =
6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 56, 60, 64, 80.
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FIG. 2: Specific heat C(K) for lattice sizes L =
6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 56, 60, 64, 80.

received very good fits deeming a higher order correction
term unnecessary. The sought parameter is of course c0.
Taking the median of these gives a final estimate of Kc
for that particular quantity. Repeating this for all quant-
ities, a grand total of 15, allows us to make a statistical
analysis of them. We have used the median as the estim-
ate, with the first and third quartile as error estimates.
In short, we take the median of the medians, very much
like in [12].
The points scale very nicely with the linear order using
only the simple expression above, see Figure 3. The res-
ulting estimate is Kc = 0.1496947±5·10−7. This falls in-
side the by now rather old estimateKc = 0.14965±5·10−5
found in [15] and agrees with the estimate from [4].
The critical points in question are the locations of
the following; the maximum of the specific heat C
and susceptibility χ̄, maximum and minimum of the
cumulants c3(E)/n, c3(|M |)/n, (c4(E) − 3 c2(E))/n
and (c4(|M |) − 3 c22(|M |))/n, maximum of ∂µ̄/∂K,
∂ log µ̄/∂K, ∂ logχ/∂K and ∂Q/∂K, where Q is the
Binder cumulant 1 −

〈

M4
〉

/3
〈

M2
〉2
and finally the
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crossing point between QL and QL/2. See eg [16] for
a discussion of the last four quantities.
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FIG. 3: The critical points vs 1/L with fitted curves.

The expression above also provides us with estimates
of the exponent ν. The location of a critical point K∗L
should deviate from Kc as roughly K

∗
L − Kc ∼ L−1/ν ,

again see [16]. Repeating the median-of-the-medians ap-
proach gives λ = 1/ν = 2.00±0.03 where the bounds are
again based on the 1st and 3rd quartile, thus rendering
us ν = 0.50 ± 0.01. The Josephson inequality tells us
that α ≥ 2−Dν, and hence our midpoint estimate gives
α ≥ 0 ± 0.04 for D = 4, since α = 0 [3] our data is in
good agreement with the rigorous results. Similarly an
estimate of β = 0.50 is found, and the mean-field value
is β = 1

2
.

Having established an estimate of Kc we can now es-
timate the internal energy UL(Kc) and again fit the scal-
ing formula above to these data for Lmin = 24, 32, 40.
The different c0, and thus the asymptotic values of Uc,
end up inside the interval 0.77053± 4·10−5.

B. Critical values

Our aim is now to try to distinguish between the two
possible scenarios, either we have a logarithmic singular-
ity or the specific heat is bounded at Tc. We attempt to
do this by making least-squares fits to the data for two
different forms of the fitting function.
According to scaling theory, see [17], the maximum
specific heat Cmax is proportional to 3

√
logL. For L ≥

12 this seems plausible given our data. In Figure 4 we
show Cmax versus 3

√
logL together with a fitted straight

line, y = 115x − 56.7, and indeed they line up rather
convincingly. The reader should note that Cmax grows
very slowly indeed.
For the bounded scenario we try a fit where Cmax is
proportional to a power of L. A least-squares fit of both
constant and exponent gives 150.49 + 180.5L−0.496. We
show this in the inset of Figure 4. The fact that the ex-

ponent is negative would of course mean that the specific
heat is finite in the limit.
For both models there is some variation in the coeffi-
cients and the exponent if one makes the fit to different
subsets of the data points, but no drastic changes. An at-
tempt with evaluating the specific heat and the suscept-
ibility at the asymptotic Kc for each linear size instead
gave a very similar behaviour to that of their maximum
value.
To the eye both fitting functions work reasonably well
and we simply find that the canonical ensemble data can
not strongly distinguish the two scenarios.
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FIG. 4: Cmax vs 3
√
logL and L−0.496 (inset), together with the

fitted curves.

IV. COMBINATORIAL QUANTITIES

With regards to the microcanonical ensemble the two
scenarios will be that either K ′(U) goes to 0 at Uc or it
converges to a finite positive value
Figure 5 shows the microcanonical quantity K(U) and
in Figure 6 its derivative is shown, both together with
zoomed-in versions near the critical energy Uc. Most of
the sampling was done for energies close to the critical
one for the given value of L so the curves become noisier
further away from Uc.
The minima do not at all seem to approach zero as
they do for d = 2 [18] and d = 3 [12]. In fact the beha-
viour here is qualitatively different in that the values are
actually increasing rather than decreasing.
It is known, see e.g. [11], that the specific heat corres-
ponds to 1/K ′(U). Thus limU→Uc K

′(U) = 0 if and only
if limK→Kc C(K) =∞. Figure 7 shows the minima versus
1/L together with a fitted line y = 0.00419 − 0.0151x,
suggesting that the minimum approaches a maximum
0.00419.
The optimal exponent of 1/L, naturally, depends to
some extent on which data points are used. Using a least-
squares fit to different subsets of the data for L ≥ 6
gives exponents between (roughly) 0.9 and 1.5. More
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specifically, if we check all subsets of the data with L ≥ 6
on between 10 and 12 points a median exponent of 1.25
is received and for c0 the median value was 0.00406 with
first and third quartiles 0.00402 and 0.00413 respectively.
The extremal values for c0 are 0.0038 and 0.0044. If we
instead use all the data points for L ≥ 8 we obtain the
exponent λ = 1.147 and c0 = 0.00411.
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FIG. 5: Coupling K(U) for L ≥ 6.
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FIG. 6: Coupling K ′(U) for L ≥ 6.

V. CONCLUSIONS

We have studied the two proposed scenarios for the
critical behaviour of the specific heat of the 4-dimensional
Ising model. This has been done in both the canonical
and the microcanonical ensembles. We have found that
for the given lattice sizes the canonical ensemble can not
conclusively distinguish between the two scenarios, and
in an attempt to circumvent this we have instead turned
to the microcanonical ensemble.

There are two reasons for why the microcanonical en-
semble could give clearer results in this situation, the first
predicted and the second unexpected.
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FIG. 7: The minimum of K ′(U) vs 1/L, together with the
fitted curve.

First, the canonical ensemble is expected to have larger
finite size effects than the microcanonical ensemble. To
see this we may consider an idealised example where, for
a finite system, S(U) at each energy U is identical to
the limit as n → ∞. Here the density of states has no
finite size effects at all, apart from only being defined at
certain discrete set of values of U . However because of
the discrete energies there will still be finite-size effects
in the corresponding canonical ensemble.

Secondly, a divergent specific heat means that K ′(U)
goes to 0 at Uc, and as we have found the minimum value
of K ′(U) is actually increasing rather than decreasing.
This gives us a qualitative signal, rather than a weak
quantitative one, that the specific heat actually converges
to a finite value.

Our conclusion is that either much larger systems are
needed to see the asymptotic behaviour of this model,
and this possibility can only be ruled out by a rigorous
convergence result, or the specific heat is in fact bounded
at Uc, thus contradicting the renormalization theory pre-
diction.
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