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Abstract

In this paper we discuss how partial knowledge of the density of states

for a model can be used to give good approximations of the energy dis-

tributions in a given temperature range. From these distributions one

can then obtain the statistical moments corresponding to eg the internal

energy and the specific heat. These questions have gained interest apro-

pos of several recent methods for estimating the density of states of spin

models.

As a worked example we finally apply these methods to the 3-state

Potts model for cubic lattices of linear order up to 128. We give estimates

of eg latent heat and critical temperature, as well as the microcanonical

properties of interest.

1 Introduction

When studying a statistical mechanical model the most complete information
is given by the density of states function. From complete knowledge of the
density of states one can immediately work with the microcanonical ensemble
and of course also compute the partition function and through it have access
to the canonical ensemble as well. The main problem here is that computing
the density of states for systems of even very modest size is typically very hard.
However, recently several sampling schemes which strive to approximate the
density of states have appeared. One recent method was given [WL01] and
in [WS02] several such methods were given, and in [HRA+04a] all of the later
methods as well as several others were united in a common framework.
For work in the microcanonical ensemble the mentioned methods give all

the information needed. Using them one can find the density of states in an
energy interval around the critical region and that is all that is needed for
most investigations of the critical properties of the model. The microcanonical
ensemble is more refined than the canonical ensemble in that every equilibrium
measure for the canonical ensemble is found among the equilibrium measures
for the microcanonical ensemble, but for some models there are microcanonical
equilibria which are not present in the canonical ensemble. For a fuller survey of
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the mathematical theory of ensemble equivalence see [TET04] and its references.
This means that all properties of the thermodynamic limit can be obtained via
the microcanonical ensemble.
However, even in view of what has been said the canonical ensemble has its

own interest for finite systems. Among other things it governs the behaviour of
many sampling algorithms and for systems where we have ensemble nonequival-
ence its dynamic can be very interesting. In order to reconstruct the canonical
ensemble one would in principle need to know the density of states for all values
of the energy E. However, using methods as in [HRA+04a] this is very costly,
and also not needed for work in the microcanonical ensemble.
Our aim is to look at how density of states data from a restricted interval

of energies can be used to get an approximation of the energy distribution of
the canonical ensemble for some range of couplings K. Thanks to the strong
concentration of the energy distributions we will see that one can obtain a very
good approximation of the energy distribution and through its moments most of
the standard thermodynamical properties. This will be demonstrated first in a
case where we know the exact partition function, the Ising model on the 256×256
square lattice, and then for a case where we have ensemble nonequivalence: the
3-state potts model on the 3-dimensional cubic lattice. All in all we find that
with data collected with the methods of [HRA+04a] in mind one can get a good
picture of the canonical ensemble as well as the microcanonical. In fact, thanks
to knowing the density of states for a full interval of energies we will be able
to reconstruct the canonical ensemble for all couplings in some interval rather
than just those used in the sampling process.

2 Notation

Let us define what we need in terms of the Ising model. Later on, when the
Potts model is our subject, we will redefine some quantities, but our general
discussion will be held in terms of the Ising model. Let G be a graph on n
vertices V = {1, . . . , n} and m edges. A state is a function s : V → Q where
Q = {+1,−1} and we say that vertex i has spin si. The energy of a state is
defined as E(s) =

∑

ij sisj where the sum is taken over all edges ij of the graph
and we have −m ≤ E ≤ m. The magnetisation of s is defined as M(s) =

∑

i si
so that −n ≤M ≤ n.
A normalised energy and magnetisation will often be used, here defined as

U = E/m and µ = M/n so that −1 ≤ U, µ ≤ 1. The number of states
having energy E and magnetisation M is denoted a(E,M). The number of
states at energy E, or, the density of states, is denoted a(E), where, of course,
a(E) =

∑

M a(E,M).
From quotients of a(E) we obtain what we will refer to as the coupling

function

K(U) =
1

`
log

a(E)

a(E + `)

where U = E/m and ` is the difference between two consecutive energies. The
very fundamental entropy function

S(U) =
log a(E)

n
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is of course related to the coupling function through

K(U) = − n
m
S′(U)

See [HRA+04a] for proofs and further details.
The partition function is defined for all graphs as

Z(K,H) =
∑

E,M

a(E,M) exp(KE +HM)

where K and H are the dimensionless coupling and external field respectively.
When the external field is zero we simplify as

Z(K) =
∑

E

a(E) exp(KE)

As a convention we will write our coupling dependent quantities in a calligraphic
font, such as Z(K).
The central moments of a random variable X are defined

σi = 〈(X − 〈X〉)i〉, i = 0, 1, . . .

where σ0 = 1, σ1 = 0 and σ2 = Var (X). The standard deviation is written
σ =

√
σ2. The cumulants κi of a distribution, or, the i:th derivatives of logZ,

can be expressed in terms of moments. For the first few we have

∂ logZ(K)
∂K

=κ1 = 〈E〉

∂2 logZ(K)
∂K2

=κ2 = Var (E) = σ2

∂3 logZ(K)
∂K3

=κ3 = σ3

∂4 logZ(K)
∂K4

=κ4 = σ4 − 3σ22

The free energy is here defined as

F(K) = 1
n
logZ(K)

and the reader should note that we have used a simplified version compared to
its traditional form. The internal energy, specific heat and coupling dependent
entropy are given by

U(K) = 1
m

∂ logZ(K)
∂K

=
1

m
〈E〉.

C(K) = 1
m

∂2 logZ(K)
∂K2

=
1

m
Var (E) .

S(K) = F(K)− m
n
K U(K)

We would also like to study the higher derivatives in the form of skewness

Γ1(K) =
∂3 logZ(K)/∂K3

(∂2 logZ(K)/∂K2)3/2
=

σ3

(σ2)
3/2
=

κ3

(κ2)
3/2

3



and (excess) kurtosis

Γ2(K) =
∂4 logZ(K)/∂K4

(∂2 logZ(K)/∂K2)2
=
σ4
σ22
− 3 = κ4

κ22

Note that for normal distributions they both evaluate to zero.
Derivatives with respect to the field H are of course obtained analogously.

The magnetisation and susceptibility are defined respectively as

µ(K,H) =
1

n

∂ logZ(K,H)
∂H

=
1

n
〈M〉

χ(K,H) =
1

n

∂2 logZ(K,H)
∂H2

=
1

n
Var (M)

However, what one usually want is the spontaneous magnetisation and suscept-
ibility. As finite size approximations of these we use

µ̄(K) =
1

n
〈|M |〉

χ̄(K) =
1

n
Var (|M |)

and assume that these converge to the appropriate limits.
Given a lattice of side L with L3 vertices we call L the linear order of he

lattice. When necessary we will subscript the functions with the linear, as in
ZL.

3 Distributions of energy

We will assume that our sampled data contains information on quotients of
consecutive density of states, or rather, that we have estimated the coupling
function K(U) for an interval of energies u ≤ U ≤ v. We would like to recon-
struct the distribution of energies for a given coupling K0. The process is rather
straightforward and follows more or less by definition, but we will derive it in
some detail.

3.1 From coupling to distribution

We assume the Boltzmann distribution for the states, that is, if we sample at a
coupling K0 the probability for our system being in state s is

Pr (s) =
exp(K0E(s))

Z(K0)

and consequently the probability for our system being in a state of energy E is

Pr (E) =
a(E) exp(K0E)

Z(K0)
(1)

Recall that we defined a(E) = exp(nS(U)). Then we obtain

Pr (E) =
exp (nS(U) +mU K0)

Z(K0)
(2)
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By definition we also have

S(U) =

∫ U

−1

S′(x) dx =

∫ u

−1

S′(x) dx+

∫ U

u

S′(x) dx = A− m
n

∫ U

u

K(x) dx

and trivially

U = u+

∫ U

u

1 dx

Plugging these identities into Equation 2 and applying only a modicum of al-
gebraic manipulation it simplifies finally into

Pr (E) = c exp

(

m

∫ U

u

K0 −K(x) dx
)

(3)

Since the outcome is a probability function the constant c is defined by norm-
alising so that

∑

E

Pr (E) = 1 (4)

where the sum is taken over all energies E such that u ≤ E/m ≤ v. Finally,
we note in passing that the derivative of the probability function with respect
to U is m (K0−K(U))Pr (E). Thus the points where the sign of the derivative
changes is determined by when K0 = K(U).
Note that we have only defined the function K(U) at discrete points U =

E/m so we should be somewhat careful with how the integral is taken. If a
function f(x) is defined at a = x0 < x1 < . . . < xp = b then we use a left-point
rule for integration

∫ b

a

f(x) dx =

p−1
∑

i=0

f(xi) (xi+1 − xi)

Having reconstructed the distribution of energies the moments and cumu-
lants are easily retrieved. First the average

〈E〉 =
∑

E

E Pr (E)

and then the central moments

σi =
∑

E

(E − 〈E〉)i Pr (E)

and from these we obtain the sought-after estimates of the derivatives by eval-
uating the cumulants of the distribution so that, for example

κ4 = σ4 − 3σ22 =
∂4 logZ
∂K4

Let us address the issue of derivatives with respect to the field as well. If we
during our sampling process remembered to collect data on the magnetisation as
well, then we can reconstruct the spontaneous magnetisation and susceptibility
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as well. Our program should then collect raw moments on the form 〈|M |i | E〉.
Then the following holds

µ̄(K0) =
1

n
〈|M |〉 = 1

n
〈〈|M | | E〉〉 = 1

n

∑

E

〈|M | | E〉Pr (E) (5)

χ̄(K0) =
1

n
Var (|M |) = 1

n





∑

E

〈|M |2 | E〉Pr (E)−
(

∑

E

〈|M | | E〉Pr (E)
)2




(6)

The following is a nice alternative way of writing the variance

Var (|M |) = 〈Var (|M | | E)〉+ Var (〈|M | | E〉)

that is, the variance is the sum of the expectation of the variances and the
variance of the expectations.

3.2 Accuracy of the reconstructed distributions

Since the canonical ensemble is always determined by the density of states we
only have two sources of errors: the precision of the original data and the
truncation error due to not having data from all energies.
In a perfect world the collected data comes from the entire interval of energies

−1 ≤ U ≤ 1. However, normally it suffices for the interval to be wide enough
to cover the energies at coupling K0 with a high probability. In short, the
distribution of energies corresponding to K0 must stay in the interval [u, v] with
a probability close to 1. If [u, v] only covers say, 99% or less of the energies you
see at K0, the normalising step in Equation 4 will produce erroneous results.
Given a coupling K0 that is close to the critical coupling Kc we expect the

distribution to be anything but normal (ie gaussian). But, as we move away from
Kc the distribution typically becomes close to normal. For example, at K = 0
the distribution is clearly approaching a normal one with increasing system size.
It has been shown, see [ML73], that this also holds for Ising systems when K is
greater than some K1 > Kc. Since our approach is somewhat pragmatic we will
only assume that far enough from Kc the energy distributions can be treated
as roughly normal.
For how large or small values of K0 does the procedure return a credible

distribution on [u, v]? Treating the distribution as roughly normal it should be
enough, for all practical purposes, to make sure that the end-points are at least
4, if possible 5 and preferably 6 standard deviations σ away.
The probability density of a normally distributed variable is

f(x) =
1√
2π
exp(−x2/2)

We will translate it slightly to the right, ie take f(x − p) for p > 0, and cut it
off at x = 0. Now let X be a random variable with probability density

g(x) =

{

f(x−p)
A(p) x > 0

0 x ≤ 0
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where A(p) is the mass of probability on x > 0, ie

A(p) =

∫ ∞

0

f(x− p) dx

so that g(x) becomes a cut-off, but otherwise normal looking, probability density
on the real axis. For which p is the y-axis, ie the cut-off point, located k standard
deviations σ away? Numerical calculations gave Table 1 below and in Figure 1
the distribution functions are shown for k = 2, 3, 4. In the Table we also list the
errors

εi = |κi(g)− κi(f)|
that is, we take the difference in cumulants for the cut-off density g and the
normal density f translated k standard deviations. These errors are of course
very idealised, being based on normal distributions, and should be considered
rough guidelines. For any particular distribution we will see different errors and
especially the higher cumulants will deviate from these.

k p ε1 ε2 ε3 ε4
2 1.728042230 2·10−1 2·10−1 2·10−1 2·10−1
3 2.973669402 2·10−2 1·10−2 4·10−2 8·10−2
4 3.998789790 1·10−3 5·10−4 2·10−3 7·10−3
5 4.999979927 2·10−5 7·10−6 4·10−5 2·10−4
6 5.999999885 6·10−7 4·10−8 2·10−7 1·10−6

Table 1: Peak location p and cumulant errors for a cut-off normal distribution
with 〈X〉 = k σ.

2 4 6 8

0.1

0.2

0.3

0.4

Figure 1: Cut-off normal distributions such that 〈X〉 = k σ for k = 2, 3, 4.

7



4 The 2-dimensional Ising model

We will employ the 2D Ising model as a test bed for our method. Recall that
the critical coupling is Kc = arctanh (

√
2 − 1) ≈ 0.4407 and that the critical

energy is Uc = 1/
√
2 ≈ 0.7071. In [HRA+04b] we computed the exact partition

function for the 256 × 256-lattice with periodic boundary. However, since the
largest density of states a(0) has 19726 digits we will take the liberty of doing
all actual computations with 50 digits numerical precision instead.
Suppose now that we have collected data on K(U) for u = 0.6 ≤ U ≤ 0.8 =

v, an interval comprising 6554 energies. In Figure 2 we plotK(U) andK ′(U) for
L = 256. From the exact (50 digits) coupling function on the interval [0.6, 0.8]

0.6 0.65 0.7 0.75 0.8

0.42

0.43

0.44

0.45

0.46

0.6 0.65 0.7 0.75 0.8

0.15

0.2

0.25

0.3

0.35

Figure 2: K(U) and K ′(U) for 256× 256-lattice.

we reconstruct the distribution, ie the probability density function, of energies
at Kc using Equation 3. Let εi denote the relative error of the i:th cumulant
where we compare the cumulant κi of the reconstructed energy distribution with
the i:th derivative of logZ, ie

εi =

∣

∣

∣

∣

κi
∂i logZ/∂Ki − 1

∣

∣

∣

∣

The relative errors ε1, ε2, ε3, ε4 are negligibly small, less than 1·10−30. However,
this distribution lives clearly in the middle of our energy interval [0.6, 0.8], the
lower bound being 14σ below and the upper bound 12σ above the mean. In
Table 2 we compute relative errors of the cumulants when the coupling cor-
responds to a cut-off distribution with 〈E〉 located k σ from the lower bound
u = 0.6 for k = 2, 3, 4, 5, 6 and in Table 3 we do the corresponding at the other
end of the interval so that 〈E〉 is k σ from the upper bound v = 0.8. Figure 3
shows the probability densities at K = 0.423780, K = Kc and K = 0.454942.

k K ε1 ε2 ε3 ε4
2 0.418736 7·10−4 2·10−1 1·10+1 9·10+1
3 0.420644 4·10−5 1·10−2 1·100 4·10+1
4 0.422226 9·10−7 4·10−4 6·10−2 2·100
5 0.423780 7·10−9 4·10−6 8·10−4 4·10−2
6 0.425338 2·10−11 1·10−8 3·10−6 2·10−4

Table 2: Relative errors of cumulants for cut-off distribution with 〈X〉 = u+k σ.
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k K ε1 ε2 ε3 ε4
2 0.460385 5·10−4 2·10−1 6·100 5·10+1
3 0.458331 2·10−5 1·10−2 8·10−1 2·10+1
4 0.456623 5·10−7 3·10−4 3·10−2 1·100
5 0.454942 4·10−9 3·10−6 3·10−4 1·10−2
6 0.453254 7·10−12 7·10−9 9·10−7 4·10−5

Table 3: Relative errors of cumulants for cut-off distribution with 〈X〉 = v−k σ.

We also computed the cumulant errors atKc with the upper and lower bound
of the energy interval located 6σ away. For L = 32, 64, 128, 256 the errors are
quite small, ε1 < 1 ·10−12, ε2 < 2 ·10−10, ε3 < 2 ·10−8 and ε4 < 6 ·10−8. For
L ≤ 16, the errors become larger, but on the other hand for such small graphs
it is easy to collect a complete set of K(U)-data instead of only a short interval.

0.65 0.7 0.75 0.8

0.0005

0.001

0.0015

0.002

Figure 3: Probability densities of energies at K1 = 0.423780 (left), Kc (middle)
and K2 = 0.454942 (right) for 256 × 256-lattice. At K1 and K2 the interval
bounds are 5σ away. Probability Pr (E) on the y-axis and energy U = E/m on
the x-axis.

Regarding the magnetisation and susceptibility we have no way of comparing
the reconstructed values with exact values. We have simply run the Metropolis
method at 10 different temperatures in the vicinity of Kc (0.42 ≤ K ≤ 0.46) and
collected magnetisation moments at each energy level. Using these data and the
exactK-function we can reconstruct the magnetisation and susceptibility at any
temperature in that region using Equation 5 and 6 adding data as prescribed
in [HRA+04a]. See Figure 4 for a snap-shot of the result. The reconstructed
curves agrees very well with the sampled data.
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0.43 0.435 0.44 0.445 0.45 0.455

0.2

0.4

0.6

0.8

0.43 0.435 0.44 0.445 0.45 0.455

250

500

750

1000

1250

1500

1750

Figure 4: µ̄(K) and χ̄(K) for 256× 256-lattice.

5 The free energy

By definition we have that

F(K) = F(0) + m
n

∫ K

0

U(x) dx

where the constant F(0) = log 2 for the Ising model, and F(0) = log q for the
q-state Potts model. Having evaluated U(K) for a number of values of K this
is of course easily accomplished. Unfortunately, this formulation implies that
we have collected data so that the energy distribution can be reconstructed for
K ≥ 0. For smaller graphs this is of course perfectly alright but for large graphs
this was exactly what we wanted to avoid. However, due to the well-behaved
nature of the internal energy U(K) we can circumvent this problem. Suppose
we have reconstructed the internal energy for two system sizes L1 and L2, where
L1 < L2. Suppose further that we have UL1(K) for 0 ≤ K ≤ b1 and UL2(K) for
a ≤ K ≤ b2 where 0 ≤ a ≤ Kc ≤ b2 ≤ b1. Then, for a ≤ K ≤ b2 we have

F(K) = F(0) + m
n

∫ a

0

UL1(x) dx+
m

n

∫ K

a

UL2(x) dx+ ε

where ε is an error term.
How big is the error? Let f and g be continuous functions on the interval

[a, c] with a < b < c. Then the following elementary calculation gives an
estimate:

∫ c

a

g(x) dx =

∫ b

a

g(x) dx+

∫ c

b

g(x) dx =

=

∫ b

a

g(x)− f(x) + f(x) dx+
∫ c

b

g(x) dx =

=

∫ b

a

f(x) dx+

∫ c

b

g(x) dx+ ε

where ε is the error term

ε =

∫ b

a

g(x)− f(x) dx

which gives the very simple but useful estimate

|ε| ≤ (b− a) max
a≤x≤b

|g(x)− f(x)| (7)
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Since the internal energy function is an increasing and, in fact, convex func-
tion, it is easy to establish the maximum. The integration is numerical so it
is important to evaluate U(K) at points chosen densely enough, with special
attention to values close to Kc where U(K) is expected to change rapidly.

5.1 A worked example for the 2D Ising model

Here our goal is to compute the free energy at K = Kc for the 256×256 2D Ising
model by using a sequence of system sizes, L = 32, 64, 128, 256, and formulate
the method as

F256(Kc) = log 2 + 2
∫ 0.15

0

U32(x) dx+ 2
∫ 0.30

0.15

U64(x) dx+

+2

∫ 0.40

0.30

U128(x) dx+ 2
∫ Kc

0.40

U256(x) dx

though the integration will of course be numerical. To evaluate the UL(x) at
the couplings indicated by the integral boundaries we use the exact (to 50 digits
precision) K-functions at intervals wide enough to keep the endpoints 6σ away
for each energy distribution. Picking simple values gives the following energy
intervals, coupling intervals and step lengths used for evaluating UL(K).

L = 32, −0.15 ≤ U ≤ 0.30, 0.00 ≤ K ≤ 0.15, h = 0.0010
L = 64, 0.05 ≤ U ≤ 0.45, 0.15 ≤ K ≤ 0.30, h = 0.0005
L = 128, 0.30 ≤ U ≤ 0.60, 0.30 ≤ K ≤ 0.40, h = 0.0002
L = 256, 0.50 ≤ U ≤ 0.75, 0.40 ≤ K ≤ 0.441, h = 0.0001

The intervals for K were chosen to give good overlaps, and are of course model
dependent.
Numerical integration of these data points, using eg the trapezoidal method

gives that F256(Kc) ≈ 0.92970521. The correct answer is F256(Kc) = 0.92970516 . . .
giving an error of 5.5·10−8.
The error contribution given by Equation 7 is only of the order of 6·10−12.

The main error source is actually the numerical integration. As is well-known,

numerical evaluation of
∫ b

a
f(x) dx with the trapezoidal rule gives the error term

ε = − (b− a)h
2

12
f ′′(ξ), a < ξ < b

where h is the step length. Since the function we integrate is U(K) its second
derivative is

U ′′(K) = 1
m

∂3 logZ(K)
∂K3

=
κ3
m

and it is at a very little extra cost we evaluate the third cumulant when we
already have the distribution.
For example, the error contributed from

2

∫ b=0.15

a=0

U32(x) dx

is at most

2 (b− a)h2
12

max
a<x<b

U ′′32(x) =
2 (0.15− 0) 0.0012

12
1.67 ≈ 4.2·10−8
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and the errors contributed by the other integrals are at most respectively 3.4·10−8
for L = 64, 1.6·10−8 for L = 128 and 5.8·10−8 for L = 256 and they sum up to
1.5·10−7 which is clearly larger than the actual error we received.

6 An example with a first order phase trans-

ition: The 3-dimensional 3-state Potts model

For this model we need to redefine some of our quantities. A state is here a
function s : V → Q where Q is a set of q distinct elements, eg Q = {1, . . . , q}.
The energy is defined as E(s) =

∑

ij δ(si, sj), where δ(x, y) is the Kronecker-
delta, so that 0 ≤ E ≤ m. We normalise as before and let U = E/m so that
0 ≤ U ≤ 1. Let ηj =

∑

i δ(si, j), ie the number of vertices having spin j. For the
Potts model, the definition of magnetisation M varies slightly in the literature.
For example, M = max(η1, . . . , ηq) is sometimes used, but M = η

2
1 + . . . + η

2
q

is the one used here. This means that n2/q ≤ M ≤ n2 and we normalise by
taking µ̄ = µ = M/n2 so that 1/q ≤ µ̄ ≤ 1. Having defined these quantities
their physical versions follow accordingly.

6.1 The sampled data

The data were generated and collected by using the sampling method described
in detail in [HRA+04a] and we refer to that paper for further details. Since this
model is conjectured to have a first order phase transition and cluster methods
thus are expected to have exponential mixing time [CJF+99] we opted for a
highly optimised single spin Metropolis method. We used up to a few hundred
independent spin systems, which after slowly being brought to the right coupling
were given a few days or weeks, depending on their size, of continuous running
for mixing. The length of the sampling runs were of the same order.
For the smaller lattices we collected at least 10000 measurements per energy

level, often orders of magnitude more. For the larger lattices, say L ≥ 32,
this quickly becomes difficult. For L = 96, 128 we did not manage to fill out all
energy levels inside the energy jump at critical the coupling, though these empty
levels are very few relatively speaking. From these data we then constructed
the coupling function K(U).
The coupling functions K(U), from which the energy distributions are gen-

erated, are shown in the left plot of Figure 5 and the right plot shows the
magnetisations µ(U). Note that the K-functions behave rather different from
that of the Ising model in Figure 2. Here the K-functions have their own set of
critical points and they are listed in Table 4. Let U− and U+ be the locations
of the maximum and the minimum respectively of K(U). The corresponding
values of K at these points are denoted K− and K+ respectively. We define the
latent heat as U± = U+ − U−. Let also µ+ and µ− denote the magnetisation
at respectively U+ and U−.

6.2 The reconstructed ensemble

Next we used the U -dependent functions from the previous section to reconstruct
the K-dependent quantities in the way described earlier in the paper. Let us
here stress that none of the functions plotted here were sampled directly, ie we
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Figure 5: K(U) (left) and µ(U) (right) for L ≥ 16.

L U− U+ U± K− K+ µ− µ+

6 0.54502 0.60677 0.06174 0.553398 0.548924 0.4174 0.5125
8 0.54138 0.59245 0.05101 0.553159 0.549088 0.3930 0.4779
12 0.53851 0.57979 0.04128 0.552756 0.549367 0.3694 0.4442
16 0.53721 0.57327 0.03606 0.552507 0.549588 0.3580 0.4264
24 0.53603 0.56884 0.03281 0.552133 0.549861 0.3474 0.4119
32 0.53564 0.56717 0.03153 0.551905 0.550012 0.3427 0.4057
48 0.53478 0.56645 0.03167 0.551625 0.550151 0.3380 0.4012
64 0.53457 0.56796 0.03340 0.551465 0.550233 0.3363 0.4029
96 0.53337 0.56816 0.03479 0.551242 0.550284 0.3344 0.4019
128 0.53090 0.56785 0.03694 0.550826 0.550306 0.3336 0.4004

Table 4: Critical points and values of the combinatorial functions.

did not keep track of the variance and expectation of the energy in the sampling
runs and everything here is based on the microcanoncial data.
First we will show a quick gallery of pictures of the physical, ie coupling

dependent, quantities that were defined in Section 2. In Figure 6 we show the
free energy F and the internal energy U in a narrow region around Kc for the
larger lattices. The dramatic jump in the energy of course leads to a similar
behaviour in the entropy S(K) shown in Figure 7. This is also seen in the
magnetisation µ(K) in the same figure. We find that everything agrees well
with the expected first order nature of the phase transition.
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Figure 6: Free energy F(K) (left) and internal energy U(K) (right) for L ≥ 32.

The specific heat C(K) is shown for L = 64 in the left plot of Figure 8. The
maximum of this quantity grows very fast with L and to be able to compare
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Figure 7: Entropy S(K) (left) and magnetisation µ(K) (right) for L ≥ 32.

them for several L the right plot shows their logarithm. This can also be said
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Figure 8: Specific heat C(K) for L = 64 (left) and its logarithm for L ≥ 32
(right).

about the skewness and kurtosis in Figure 9. These quantities changes sign in a
number of critical points so taking logarithms is not advisable. The distributions
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Figure 9: Skewness Γ1(K) (left) and kurtosis Γ2(K) (right) for L = 64.

go through a sharply bimodal phase as the coupling moves past Kc. Define K
∗

as the point where the specific heat has its maximum. What do the distributions
at this point look like? In the left plot of Figure 10 the probability densities
p(x) of the normalised variable x = (E−〈E〉)/σ(E) at K∗ are shown, while the
right plot shows the distribution functions (accumulated densities) defined as

Φ(x) =

∫ x

−∞

p(t) dt.

Note, by the way, that the peaks in the probability densities are very close ±σ.
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In Table 5 the data connected with K∗ are listed.
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Figure 10: Normalised probability densities (left) and distribution functions
(right) vs σ at K∗ for L ≥ 32.

L K∗ C(K∗) U(K∗) F(K∗) S(K∗) µ∗

6 0.555045 5.1279 0.63766 1.78444 0.72265 0.5557
8 0.552821 7.2889 0.61575 1.77697 0.75577 0.5130
12 0.551143 12.539 0.59190 1.77220 0.79355 0.4643
16 0.550665 19.584 0.57983 1.77093 0.81306 0.4381
24 0.550460 41.929 0.56831 1.77034 0.83185 0.4118
32 0.550462 81.880 0.56318 1.77028 0.84026 0.3996
48 0.550502 255.97 0.55921 1.77032 0.84678 0.3901
64 0.550530 614.58 0.55821 1.77036 0.84842 0.3877
96 0.550432 1790.0 0.55550 1.77020 0.85291 0.3821
128 0.550353 3422.7 0.55279 1.77008 0.85738 0.3763

Table 5: Critical points K∗ and values of the physical quantities.

6.3 Asymptotics

In this section we will see how some of the values in the tables above scale
with the linear order. First we wish to establish the critical coupling Kc. We
have three separate sequences of critical points which should all converge to
Kc, namely K

∗, K+ and K−. The coefficients of the fits descibred below are
collecrted in Table 6.3.
The sequences K+ and K− from Table 4 have the nice feature that they are

monotone; K+ is increasing and K− is decreasing. Unfortunately though, the
K−-sequence appears slightly blemished for L = 128, as is the U−-sequence.
Even so, after discarding that particular point and assuming that the sequences
stay monotone also for larger L we then have upper and lower bounds on Kc.
Then 0.550306 ≤ Kc ≤ 0.551242, a rather wide interval. The story is different
for the K∗-sequence, it sometimes increases, sometimes decreases, but we see
nothing amiss with the value for L = 128.
To establish a Kc we have attempted a simple fit of the form c0+ c1 L

−λ for
some coefficients c0, c1 and exponent λ to the data for K

∗. To find the para-
meters we used Mathematica’s non-linear fitting function. Our fitting function
applied to this sequence gives acceptable fits. We will try to estimate the error
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in this approach by fitting a curve to data of the form Lmin ≤ L ≤ 128 with
Lmin = 6, 8, 12, ie for three sets of data. Leaving out more points gives the fitted
curve an unconvincing look. This gave

Kc = 0.550425± 0.000025

which agrees with the previous interval. This estimate is a little lower than that
of [JV97] (who also provide a nice table of previous results) but their data is
based on rather small graphs, L ≤ 36. On the other hand, our estimate ends
up right in the middle of the (rather wide) interval given by [GE94].
From the interval above we choose the mid-point as our limit, ie we set

Kc = c0 = 0.550425, and fit all points to determine the remaining parameters.
Using the same limit we fitted curves to the K− (discarding L = 128) and K+

data. We received the curves shown with the points in the left plot of Figure 11.
A different behaviour is expected from the three sequences of energies; U+,

U− and U∗. Here U+ → U+c and U− → U−c and the difference U± = U+ −U−
should converge to the latent heat U±c , whereas U∗ should converge to some
value Uc between U− and U+. Again we see a possibly too big jump in the
data for U− at L = 128 so we will discard this point. Applying the process we
described above we received

U−c = 0.5322± 0.0013
U+c = 0.5670± 0.0004
Uc = 0.5513± 0.0008

Again, using the mid-points as limits we received the curves shown with the
data points in the right plot of Figure 11. Using these estimates of U+c and U

−
c

also provides us with estimates of the asymptotic latent heat U±. This resulted
in

U±c = U
+
c − U−c = 0.03480± 0.0017

which is clearly smaller than the estimate 0.0538 (after division by 3) of [JV97],
but, as we recall, their estimates were based on much smaller systems.
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Figure 11: Left: couplings K−, K∗, K+ (downwards) vs 1/L. Right: energies
U+, U∗, U− (downwards at y-axis) vs 1/L.

Applying this procedure to the free energy, where F(K∗) → Fc, and the
entropy, where S(K∗)→ Sc, we obtained

Fc = 1.77018± 0.00005
Sc = 0.86020± 0.0015
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Note the considerably larger error in Sc but also that the value is consistent
with taking

Sc = Fc − 3Kc Uc = 0.85983± 0.0025
though we receive a slightly larger error estimate. The data points and the
fitted curves are shown in Figure 12.
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Figure 12: Free energy F(K∗) (left) and entropy S(K∗) (right) vs 1/L together
with fitted curves.

For the magnetisations µ−, µ+ and µ∗ we should see a behaviour analogous
to that of the energies and we have treated them as such. We assume that
µ− → µ−c = 1/3, µ∗ → µc and µ+ → µ+c . Continuing with our trusted approach
we received

µ+c = 0.3986± 0.0015
µc = 0.3711± 0.0027

and the fitted curves are shown with the data points in Figure 6.3.
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c0 c1 λ
K∗ 0.550425 0.465327 2.5679
K− 0.550425 0.006770 0.4407
K+ 0.550425 -0.006277 0.7618
U− 0.5322 0.05402 0.8295
U+ 0.5670 1.02718 1.8039
U∗ 0.5513 0.67094 1.1376

F(K∗) 1.77018 1.92325 2.7342
S(K∗) 0.86020 -1.00861 1.1037
µ− 0.3333 0.8463 1.2827
µ∗ 0.3711 1.2524 1.0593
µ+ 0.3986 1.5332 1.4412

Figure 13: Left: magnetisations µ+, µ∗, µ− (downwards at y-axis) vs 1/L.
Right: coefficients for our fitted curves

References

[CJF+99] C.Borgs, J.Chayes, A. Frieze, J.H.Kim, P.Tetali, E.Vigoda, and
V.Vu, Torpid mixing of some mcmc algorithms in statistical phys-

17



ics, Proceedings of FOCS ’99 (1999), 218–229., Preprint available
at http://www.math.cmu.edu/˜af1p/papers.html.

[GE94] A. J. Guttmann and I. G. Enting, Series studies of the Potts model.
III. The 3-state model on the simple cubic lattice, J. Phys. A 27
(1994), no. 17, 5801–5812.
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