
On the Complexity of Matrix Reduction over

Finite Fields

Daniel Andrén, Lars Hellström, Klas Markström∗

April 18, 2007

Abstract

In this paper we study the complexity of matrix elimination over finite
fields in terms of row operations, or equivalently in terms of the distance
in the the Cayley graph of GLn(Fq) generated by the elementary matrices.
We present an algorithm called striped matrix elimination which is

asymptotically faster than traditional Gauss–Jordan elimination. The
new algorithm achieves a complexity of O

(

n2/ log
q
n
)

row operations, and

O
(

n3/ log
q
n
)

operations in total, thanks to being able to eliminate many
matrix positions with a single row operation. We also bound the average
and worst-case complexity for the problem, proving that our algorithm is
close to being optimal, and show related concentration results for random
matrices.
Next we present the results of a large computational study of the

complexities for small matrices and fields. Here we determine the exact
distribution of the complexity for matrices from GLn(Fq), with n and q
small. Finally we consider an extension from finite fields to finite semifields
of the matrix reduction problem. We give a conjecture on the behaviour
of a natural analogue of GLn for semifields and prove this for a certain
class of semifields.

MSC: 15A33, 65F05, 68W30, 68Q17, 68-04
Keywords: Matrix reduction, Complexity, Finite fields, Semifields

1 Introduction

One of the most basic facts of linear algebra is that any invertible matrix can
be written as a product of so-called elementary matrices, or equivalently that
any invertible matrix can be reduced to the identity matrix using row opera-
tions. This is a fact used in many proofs and also the workhorse behind many
numerical methods. For numerical algorithms an essential feature is that row
reduction of a matrix can be performed in time polynomial in the matrix side,
e.g. using Gaussian elimination in O(n3) element operations for an n× n mat-
rix, or (at least asymptotically) even faster using methods based on fast matrix
multiplication [1].

∗Department of Mathematics and Mathematical Statistics, Ume̊a universitet, SE-901 87

Ume̊a, Sweden

1

The aim of this paper is to consider the complexity of matrix reduction
from a different point of view. We wish to consider only methods based on row
operations, and primarily use the number of such as the complexity of the prob-
lem. One computational reason for focusing on row operations is that they on
existing processors can often be implemented far more efficiently than straight
line programs in general, in particular if each word of memory stores multiple
matrix elements, although we shall not make use of any particular computer
architecture in our analysis of the problem here. The fast methods for general
matrix reduction based on fast matrix multiplication can not be expressed in
terms of row operations so the two complexity measures are essentially different.
See Chapter 16 of [2] for a good overview of the connections between matrix
multiplication and other matrix problems.
In terms of row operations, the worst-case complexity of Gauss–Jordan elim-

ination is n2 (i.e., one row operation per matrix element), and this gives an ele-
mentary upper bound on the complexity of matrix reduction. For matrices over
infinite fields such as C this bound turns out to be optimal, however when we
consider matrices over a finite field it is in general possible to do better, at least
for large enough matrices. We will give both lower and upper bounds of the
order O

(

n2/ log n
)

for the worst-case complexity of row reduction of an n × n
matrix over any given finite field, and the constants of these bounds are only a
factor 2 apart. Our upper bound comes from a new algorithm for matrix elim-
ination called striped matrix elimination which, for small field sizes, guarantees
that we can on the average eliminate more than one off-diagonal position per
row operation. We also show that most matrices require a number of operations
which is close to the worst case.
Finally we will report the result of a large scale computational effort to

determine the exact reduction complexity for small values of n and the field size
q. Here we have also investigated what happens when the base field is replaced
by a semifield. These computations touch upon a very interesting construction
problem, attributed to Wigderson in [5], namely to explicitly construct a family
of matrices over Z2 whose row reduction requires a super-linear number of row
operations; see also [23] for a survey of related problems. While we do not have
such a construction we have found all the extremal matrices for small n.
A natural point of view when considering our result is in terms of the Cayley

graph for GLn(Fq) with the elementary matrices as the set of generators; in this
setting the complexity of row reduction is exactly the diameter of this Cayley
graph. Our results thus give close to optimal bounds for the diameter of this
Cayley graph and also a fast algorithm which can find a near optimal expression
for any element of the group as product of its generators. Here our results form
an interesting parallel to the work of Riley and Kassabov [7, 21] on constant
size generating sets for SLn(Zk), and the non-algorithmic diameter bounds of
[13] for finite simple groups.

1.1 Notation and some facts about GL(n, q)

In this paper we will use GLn(F) to denote the group of invertible n×n-matrices
over a field F , and we will also use the short form GL(n, q) = GLn(Fq), where
Fq is the finite field of order q.
Let us first state some basic facts about GL(n, q); see [22] for a good textbook

reference on this.

2

1.1.1 The size of GL(n, q)

Using some basic q-combinatorics we can write the number of elements in
GL(n, q) as

|GL(n, q)| =
n−1
∏

i=0

(qn − qi) = qn2
n−1
∏

i=0

(1− qi−n) = qn2C(n, q), (1)

for some constant C(n, q). Here C(n, q) can be interpreted as the probability
that a matrix with random entries from Fq will be invertible.
For a fixed n and increasing q the product C(n, q) approaches 1 at a speed

proportional to q−1, and for a fixed q and increasing n the product C(n, q) will
converge to a value C(∞, q) < 1 quite rapidly. Using a theorem of Euler [4] we
can find the asymptotic value for C(∞, q) as

C(∞, q) =
∞
∏

i=1

(1− q−i) = 1 +
∞
∑

i=1

(−1)i
(

q−ω(i) + q−ω(−i)
)

(2)

where ω(m) = 1
2

(

3m2 +m
)

. Note that the alternating signs of the sparse series
make it possible to compute good bounds for the series, should they be needed.
As q increases C(∞, q) will monotonely increase to 1, and is already above 0.9
for q = 11.

1.1.2 Elementary matrices and the Cayley graph

The three basic types of row operations on a matrix M from GL(n, q) are

1. Adding a non-zero multiple of one row of M to another. There are (q −
1)n(n− 1) = 2(q − 1)

(

n
2

)

such operations.

2. Interchanging two rows of M . There are
(

n
2

)

such operations.

3. Multiplying a row by a non-zero, non-identity constant. There are (q−2)n
such operations.

Each of these operations can also be expressed in terms of multiplying the
matrix M with an elementary matrix from GL(n, q). Let us denote the set of
elementary matrices from GL(n, q) by S(n, q), or simply S when there is no risk
for confusion. We have that |S| = O(qn2)
We can now consider the Cayley graph Cay(GL(n, q), S) for our chosen set S

of generators. (See [11] for definitions and general facts about Cayley graphs.)
A series of row operations correspond exactly to a walk on this Cayley graph
and our aim is to find a short path to the vertex corresponding to the identity
matrix. Note that since Cayley graphs are vertex transitive the problem of
finding a shortest path between two vertices can always be reduced to that of
finding a shortest path from a general vertex to the identity vertex.
Given a matrix M let D(M) denote the smallest number of row operations

needed to reduce M to the identity matrix I,

D(M) = min{k | ∃E1, . . . , Ek ∈ S such that E1 · · ·EkM = I},

3

or equivalently the distance between the two vertices in the Cayley graph. We
define the complexity of row reduction for matrices in GL(n, q) to be

D(n, q) = max
M∈GL(n,q)

D(M),

which in turn is the radius, and diameter, of the Cayley graph.

2 Lower bounds for the diameter

Before considering matrices from GL(n, q) let us first note that Gaussian elim-
ination is optimal for matrices from GLn(C). To see this we note that the set of
matrices which can be expressed as a product of k elementary matrices form a
variety of dimension k; see e.g. [6] for background on algebraic geometry. Since
GLn(C) cannot be written as a finite union of lower dimensional varieties, and
has dimension n2, we get our lower bound. In fact this short argument also
shows that the set of matrices with complexity less than n2 have measure zero.

2.1 Fixed q and growing n

We first find a lower bound on the diameter of Cay(GL(n, q), S) for a fixed
value of q. The proof is a simple enumerative calculation much in the style of
the lower bounds for addition chains in e.g. [19].

Theorem 2.1. For a fixed value of q,

D(n, q) > n2

2 logq n+ 1 + logq
(

An,q
(

1− 1
n

)) +O
(

1

log n

)

∼ n2

2 logq n
, (3)

where An,q =
n
n−1 − n+3

2q(n−1)

Proof. The degree r of the Cayley graph Cay(GL(n, q), S) can be written as
r = qn(n − 1)An,q. In a free group with r generators, the number of elements
generated by products of at most k generators is r

k+1−1
r−1 = rkBr,k where 1 <

Br,k < 2. This is clearly an overestimate in our case, since our Cayley graph
has quite a lot of cycles, but it will be sufficient to get our bound.
If D(n, q) < k then rkBr,k > qn

2

C(n, q). Taking the logarithm of this
inequality, for our r, and simplifying we get

k

(

2 log n+ log

(

q

(

1− 1
n

)

An,q

))

+ logBr,k > n
2 log q + logC(n, q),

k >
n2

2 logq n+ 1 + logq
(

An,q
(

1− 1
n

)) +
logC(n, q)− logBr,k

2 log n+ log
(

qAn,q
(

1− 1
n

)) ,

and since logC(n, q) is bounded the theorem follows.

We thus find that the lower bound for the complexity of matrix reduction
over a finite field differs from that over C. This could of course be a result of
our rather crude proof method but as we will see in the next section this is not

4

the case. Our upper bound for the complexity differs only by a multiplicative
constant.
Given the very simple proof of this bound it is natural to ask if the result

can be sharpened. In the proof we treat GL(n, q) as if it were a free non-
commutative group with the same number of generators, but for large n most
elements of S(n, q) commute with each other, and even those elements that do
not typically satisfy some small nontrivial identity. In the Cayley graph view of
GL(n, q), these small relations correspond to short cycles in the graph. In order
to improve the bound on the diameter one would wish to reduce the estimate
on the number of distinct elements at distance k by taking these cycles into
account. A quick calculation shows however that it does not suffice to consider
only cycles of length O(1), as in that case there is an improvement but not in
the dominant term of the bound. Using cycles of a length that grows with n
complicates matters significantly and we will leave this potential improvement
as an open problem.
Another open problem here is to prove that D(n, q) is monotonely increasing

in n. This seems intuitively obvious, and as we shall see later is true for small
n and q. A good start is of course to observe that the map

A 7→
(

A 0
0 1

)

: GL(n, q) −→ GL(n+ 1, q)

is an embedding (as an induced subgraph) of one Cayley graph into the next,
as path lengths are preserved by this map and a shortest path from some A ∈
GL(n, q) to the identity remains a shortest path in the image of the embedding.
Unfortunately we have not yet found a proof ruling out the possibility that
there is a path from the vertex (A 00 1) to the identity which does not stay within
the embedded GL(n, q) and is shorter than any path that does. In the related
problem of addition chains (see Subsection 3.3), it turns out that an increased
workspace actually may make a difference for the problem complexity, but we
suspect that one extra row in the matrix will not be sufficient for that effect to
arise.

2.2 Fixed n and growing q

For a fixed value of n and growing q we find a quite different situation. Here
there is an upper bound of n2 operations, provided by ordinary Gauss–Jordan
elimination, and as we shall see this complexity will be reached once q is large
enough. As q continues to increase the situation will become even more like
that for matrices over C as we reach a value of q beyond which a majority
of matrices will require n2 operations. In the theorems below our bounds are
general integers whereas q must be a prime power, however by the sharper
versions of Bertrand’s postulate, see e.g. [15], there is always a prime power
close to the bound.

Theorem 2.2. For q >
(

3
(

n
2

))n2−1
and n > 3 more than 12 |GL(n, q)| of the

matrices M in GL(n, q) have D(M) = n2.
More generally, if n2−a > 2 and

(

3
(

n
2

))
n2

a
−1
6 q then more than 12 |GL(n, q)|

of the matrices M in GL(n, q) satisfy D(M) > n2 − a.

5

Proof. Let us to the contrary assume that at least half the elements in GL(n, q)
can be written as products of at most k generators. As in the proof of Theorem
2.1 we get

Br,k(2q)
k

(

n

2

)k

(An,q)
k
>
1

2
qn
2

C(n, q)

We can now divide both sides by qk and, letting a = n2 − k, we get

2
Br,k
C(n, q)

2n
2−a

(

n

2

)n2−a

(An,q)
n2−a > qa.

Taking an ath root gives

(

2
Br,k
C(n, q)

)1/a

2
n2

a
−1 (An,q)

n2

a
−1

(

n

2

)
n2

a
−1

> q

and finally, using n > 3 and q > 2 to bound An,q, Br,k and C(n, q), we find that
if n2 − a > 2 then

3
n2

a
−1

(

n

2

)
n2

a
−1

> q

Setting a = 1 in the last inequality shows that if q > 3n
2−1
(

n
2

)n2−1
then the

n2 − 1 first levels cannot contain half the vertices of the graph.

In the final step of the proof we could instead of bounding the base of the
exponential part by 3, have used a slightly smaller function depending on n and
q, but since this bound is unlikely to be very good we preferred this simpler
form instead.
In view of the last result it is natural to make the following definitions.

Definition 2.3. Let qs(n) denote the smallest prime power such that if q >
qs(n) then there are at least

1
2

∣

∣GL(n, q)
∣

∣ matrices M in GL(n, q) with D(M) =
n2. Let qa(n) be the smallest prime power such that if q > qa(n) then D(n, q) =
n2.

Clearly qs(n) is larger than qa(n), so our previous bound holds for qa(n) as
well. Our next step will be to find a lower bound for qs.

Theorem 2.4. For all n,

qs(n) >
3

2

(

n

2

)

(4)

Proof. We will prove the bound by demonstrating that for q 6 3
2

(

n
2

)

the set
Z of invertible matrices with a zero entry outside the main diagonal satisfies
|Z| > 1

2

∣

∣GL(n, q)
∣

∣. A matrix from the set Z can be reduced to the identity
matrix by gaussian elimination using at most n2 − 1 row operations, since the
zero entry already has the right value.
Let A0 denote the set of matrices with no zero entries outside the main

diagonal and let A1 be the set of singular matrices. We have that

|Z| = |Fn×nq \A0\A1| > qn
2−|A0|−|A1| = qn

2−qn(q−1)n2−n−qn2
(

1−C(n, q)
)

=

= qn
2

C(n, q)− qn2(1− 1/q)n2−n = qn2
(

C(n, q)− (1− 1/q)n2−n
)

(5)

6

In order to make Z as large as required we thus need to find q such that

C(n, q)− (1− 1/q)n2−n > 1
2
C(n, q)

or equivalently
1

2
C(n, q) > (1− 1/q)n2−n. (6)

The bound (4) is trivial for n < 3. For q = 2 and n > 3 the right hand
side of (6) is bounded from above by 2−6 < 0.02 whereas the left hand side is
bounded from below by C(∞, 2) > 0.25. For q > 3 we have C(∞, q) > 0.56 and
thus the inequality will be satisfied if

0.28 > (1− 1/q)n2−n.

Taking logarithms we get ln 0.28 > (n2−n) ln(1− 1/q), and this in turn follows
from ln 0.28 > −(n2 − n)/q. We observe that −1/ ln 0.28 > 0.75 and thus (6) is
fulfilled whenever q 6 3

4 (n
2 − n) = 3

2

(

n
2

)

. Therefore qs(n) >
3
2

(

n
2

)

.

By considering larger singular submatrices we have sketched a proof for a
result of the form: For n > Nk we have that qs(n) > Ω(n

k). However, it seems
that the proof would be lengthy, require technical assumptions, and the result is
in our opinion likely to be far from optimal, so we do not include this extension.

The gap between the two bounds given here, going fromO(n2) toO
(

n2n
2−2
)

,

is enormous and it would be desirable to find bounds which are more compar-
able, without complicated technical assumptions. Another property that we
currently do not a have a proof for is that D(n, q) is monotone in q. Once again
this seems intuitively obvious.

2.3 Concentration

For matrices over C we have seen that almost all matrices have a complexity of
n2, and that the set of matrices with complexity k only have dimension k, giving
us a very strong form of concentration for the complexity of a random matrix.
For matrices over Fq Theorem 2.2 gives a similar type of result for a fixed n
and sufficiently large values of q. However when q is fixed and we consider
larger matrices Theorem 2.2 no longer tells us anything. Using the Azuma–
Hoeffding inequality we can prove another concentration result. See [14] for a
nice treatment of Doob-martingales and the Azuma–Hoeffding inequality.

Theorem 2.5. Let M be a matrix taken uniformly at random from GL(n, q)
and let E(n, q) be the expected value of D(M). Then for all t > 0,

Pr
(

∣

∣E(n, q)−D(M)
∣

∣ > tn
3
2

)

6 2e−t
2/2. (7)

Proof. First let us note that if two matricesM and M ′ differ in exactly one row
then their complexities can differ by at most n, since one can be transformed
to the other using at most n row-operations. Thus we find that the complexity
is a Lipschitz-function with Lipschitz constant n.
Let us now consider the random variables Xk obtained by conditioning

D(M) on the values of the first k rows in the random matrix M . The se-
quence X0, . . . , Xn now form a Doob-martingale with Lipschitz constant n, and
applying the Azuma–Hoeffding inequality we get our theorem.

7

From the proof of Theorem 2.1 and the upper bound in the next section we
can also conclude that E(n, q) = Θ

(

n2/ logq n
)

. Thus the complexity of a ran-
dom matrix from GL(n, q) is again strongly concentrated around its expectation.
A natural problem would be to determine

Eq = lim
n→∞

E(n, q) logq n

n2
,

for a fixed q, if this limit exists. The bounds of this and the following section
imply that

1

2
6 lim inf
n→∞

E(n, q) logq n

n2
6 lim sup

n→∞

E(n, q) logq n

n2
6 1.

3 An algorithmic upper bound: Striped matrix

elimination

When reducing an invertible matrix A over some finite field Fq to the identity,
it is possible to outperform the Gauss–Jordan algorithm by carefully choosing
the row operations to eliminate several matrix elements at each step. The
asymptotic performance is within a factor 2 of the theoretical lower bound
n2/
(

2 logq n
)

row operations.
The fundamental difference between the new algorithm and the classical

Gauss–Jordan algorithm is that where the latter proceeds with one column at
a time, the former at the same level processes a ‘stripe’ of columns; hence the
‘striped’ above. The width s of these stripes is a parameter that needs to be
tuned for optimal performance, but for s ∼ logq n one can get the performance
quoted above. What one uses is basically that there can be at most qs distinct
subrows within a stripe of width s, so if the matrix side n≫ qs then all matrix
elements of the other n − qs rows that fall within a particular stripe can be
eliminated in only n − qs row operations. This reduces the amount of work
involved approximately by a factor s, from s operations per row and stripe to
1 operation, and thus leads to the quoted asymptotic complexity of n2/ logq n.
Although this argument is not a proof, it explains the basic reason why the goal
is attainable.

3.1 Row operations description

For a first more rigorous analysis and description, we will restrict ourselves to
counting full-width elementary row operations. Each of these require n field
operations, and will turn out to be dominant also in a more careful analysis.
The two parameters n (matrix side) and s (stripe width) are given and may
be arbitrary. The outermost loop in the algorithm is over the stripes of the
matrix in pretty much the same way as the outermost loop in the Gauss–Jordan
algorithm is over the columns of the matrix. A high level description of the
algorithm can be given as:
For the processing of stripe k, which consists of columns s(k−1)+1 through

sk, the input consists of an invertible matrix A which has ai,i = 1 for 1 6 i 6
sk − s and ai,j = 0 for all 1 6 i 6 sk − s and j 6= i, i.e., the diagonal elements

8

Algorithm 1 Striped Matrix Reduction

1: procedure Reduce(A) ⊲ A is a n× n matrix.
2: Block A into stripes of s consecutive columns.
3: for all stripes Ak but the last do
4: ReduceStripe(A, k)
5: end for

6: GaussianElimination(the last stripe of A)
7: end procedure

of the previous stripes are all 1 and the off-diagonal elements of the previous
stripes are all 0.

























1 0 · · · · · ·
0 1 · · · · · ·
0 0 · · · · · ·
0 0 · · · · · ·
0 0 · · · · · ·
0 0 · · · · · ·
0 0 · · · · · ·
0 0 · · · · · ·

























This matrix is to be transformed via elementary row operations to such a state
that also the kth stripe has all ones on the diagonal and is zero otherwise.
The first step of processing stripe k is to apply elementary row operations

so that the submatrix of rows and columns sk− s+ 1 through sk is reduced to
the identity. Provided that this submatrix is invertible, this can be done using
the ordinary Gauss–Jordan algorithm in at most s2 row operations, but it may
become necessary to pivot in some other rows into the sk−s+1 through sk range
to ensure that this submatrix is invertible. The maximal cost for those pivots
is another s row operations. Thus s2+ s row operations suffice for transforming
the above matrix to this:

























1 0 · · · · · ·
0 1 · · · · · ·
0 0 1 0 · · · ·
0 0 0 1 · · · ·
0 0 · · · · · ·
0 0 · · · · · ·
0 0 · · · · · ·
0 0 · · · · · ·

























The second step of processing stripe k is where most of the work is done.
Here a fixed row is picked as “cursor row”; for simplicity we may assume that the
cursor row is row n. The remaining subrows in this stripe, i.e., 1 through sk− s
and sk+1 through n−1, will be zeroed by subtracting the cursor row from them,
at a cost of one row operation for each of these n− s− 1 rows. Obviously this
would not work if the value of the cursor row stayed the same throughout, and
it is quite possible that all the qs distinct subrows of s elements from Fq occur
somewhere in this stripe, so during the second step the cursor subrow will have
to assume all the qs distinct values a subrow can assume. Each row operation
which changes the cursor row will be to add some multiple of a row in the range

9

sk − s + 1 through sk to it, and matters can be arranged so that each of the
qs−1 transitions from one of the qs states of the cursor row to the next requires
only one such row operation, giving a total of n− s− 1+ qs− 1 = n+ qs− s− 2
row operations for the second step.

























1 0 0 0 · · · ·
0 1 0 0 · · · ·
0 0 1 0 · · · ·
0 0 0 1 · · · ·
0 0 0 0 · · · ·
0 0 0 0 · · · ·
0 0 0 0 · · · ·
0 0 · · · · · ·

























In the third and final step, the part of the cursor row that falls within the
stripe is zeroed. This requires at most s row operations. The grand total for
processing a stripe is thus n+ qs + s2 + s− 2 row operations.
At the end of the matrix, the second step above cannot be carried out because

the suggested cursor row n may be one of the sk− s+1 through sk that should
be reduced in the first step and then remain fixed throughout the second and
third. The easy way to deal with this is to use the above striped procedure
for stripes 1 through k =

⌊

(n − 1)/s
⌋

and then the ordinary Gauss–Jordan
algorithm for the remaining n − ks 6 s columns. The cost for this is at most
n(n− ks) 6 ns row operations. The total number of full-width elementary row
operations required for the algorithm is thus

T (n, s) =

⌊

n− 1
s

⌋

(n+ qs + s2 + s− 2) + n
(

n− s
⌊

(n− 1)/s
⌋

)

6

6
n2 + nqs

s
+ 2ns+ n.

Since much of the point of the algorithm is to make use of repetitions of
subrows, it seems silly to make s > logq n, and indeed for s ∼ (1 + ε) logq n for
any ε > 0 one would find that nqs/s = O(n2+ε/ logq n), which is worse than the
Gauss–Jordan algorithm. However for s = ⌊logq n⌋ one gets

T
(

n, ⌊logq n⌋
)

6
n2 + nq⌊logq n⌋

⌊logq n⌋
+ 2n⌊logq n⌋+ n 6

6
2n2

logq n− 1
+ 2n logq n+ n ∼

2n2

logq n
.

This is already within a factor 4 of the theoretical lower bound, but it is possible
to do even better by choosing s so that qs ∼ n/ logq n, e.g. a suitably rounded

10

logq n− logq logq n. In this case

T (n, s) 6
n2

s
+
nqs

s
+ 2ns+ n =

=
n2

logq n

1

1− logq logq nlogq n

+
n2

logq n (logq n− logq logq n)
+O(n logq n) =

=
n2

logq n

(

1 +O
(

logq logq n

logq n

))

+O
(

n2

(logq n)
2

)

=

=
n2

logq n
+O
(

n2 logq logq n

(logq n)
2

)

∼ n2

logq n
,

improving the constant of the asymptotically dominant term by half of that
factor 4 to a mere 2 from the theoretical lower bound.

3.2 Full description

A full complexity analysis must also include the decision of which row operations
to apply, and we also want to make sure that this can be done in an efficient
way so that the total number of operations is dominated by the cost of the
row operations. In order to do that we will in this section consider the time
complexity of all parts of the algorithm rather than just the number of row
operations.
The most mysterious part of the last section, in terms of decisions, is prob-

ably the second step, where one has to find a route through the space of possible
subrows that never intersects itself and furthermore know which rows have stripe
subrows equal to the current cursor subrow. There is however a simple solution
to this.
Beginning with the problem of finding the route, one may observe that the

problem is to visit all the qs vectors with s elements from a set of size q, without
repetitions, and without being allowed to change more than one vector element
at each step. These are the restrictions that a Gray code counter has to satisfy,
so one may simply let the route be given by a Gray code. See [10] for a thorough
survey of Gray codes. Suppose Ge : {1, . . . , qs} −→ Fsq is some Gray encoding
function and Gd : F

s
q −→ {1, . . . , qs} the corresponding decoding function G−1e .

Let us also define a function f(l) as f(l) = l+ qs if l < Gd(an,sk−s+1, . . . , an,sk)
and f(l) = l otherwise. This function will be used to shift the Gary code
appropriately. The reduction of a stripe in the high level description of our
algorithm can now be carried out as described in Algorithm 2.
The Gd function can be computed in O(s) time, so line 5 has complexity

O(ns). The input for the sort in line 6 has size O(ns), so its time complexity
is O
(

ns log(ns)
)

= O(ns logn). Since the row operation on line 13 is executed
least n− s− 1 times and these row operations have time complexity O(n), it is
clear that the corresponding O(n2) in loop 7 dominates the two previous steps.
Since the loop on line 8 may perform s row operations and line 13 never

more than one, it may appear as though the loop 8 inside loop 7 should be what
dominates the complexity of the above, but thanks to the Gray code the average
number of row operations performed by loop 8 is one or less. This can be seen by
observing that that the Hamming distance between Ge(l1) and Ge(l2) is always
bounded from above by |l1 − l2|.

11

Algorithm 2 Reduce stripe

1: procedure ReduceStripe(A, k) ⊲ ai,j denotes the current element in
position (i, j) of the matrix A.

2: Find s linearly independent rows in stripe k.
3: Pivot those rows into rows s(k − 1) + 1 through sk.
4: Apply Gaussian elimination to rows s(k − 1) + 1 through sk.
5: Form the list L of all pairs

(

i, (f ◦Gd)(ai,s(k−1)+1, . . . , ai,sk)
)

where i ∈ {1, . . . , n− 1} \ {sk − k+ 1, . . . , sk}. ⊲ f and Gd are defined
on p. 11.

6: Sort the list L by the second element.
7: for all (i, l) ∈ L, in the order they appear do
8: for all j from s(k − 1) + 1 to sk inclusive do
9: if ai,j 6= an,j then
10: Add ai,j − an,j times row j to row n.
11: end if

12: end for

13: Add −1 times row n to row i.
14: end for

15: for all j from s(k − 1) + 1 to sk inclusive do
16: Add −an,j times row j to row n.
17: end for

18: end procedure

There are many different Gray codes and if some structural information
about the matrices one intends to reduce is available then this may be used
to guide to choice of Gray code. A monotone Gray code could for example
be used if the matrices are sparse, thus increasing the likelihood that the code
will rapidly generate all present subrows. In practical implementations it may
be convenient to choose the Gray code so that Ge(1) = 0 and use f(l) = −l
instead of the f specified above, as that will make the all zeroes vector 0 the final
value for the cursor subrow and thus provides an easy condition for aborting
the loop on line 7 when only rows for which nothing needs to be done remain;
effectively this swaps the order of the second and third steps by unifying the
loop on line 15 with the loop on line 8. This requires some care however, as
there is no guarantee that there was any all zeroes subrow in the stripe to begin
with; the loop on line 8 only changes the cursor subrow value to match values of
other subrows actually present in the matrix. In no all zeroes subrow is present
, the modified algorithm may actually end up using s row operations more than
Algorithm 2.
Using a standard Gray code here is optimal for q = 2 but for larger q we

can do even better. In the description above we construct each element of Fsq
and just subtract the given element from the rows in which it appears. However
for q > 2 we can instead choose to subtract a multiple of the cursor row. This
means that instead of having to let the cursor row assume all of the qs − 1
nonzero subrow values it is sufficient to let it assume some multiple of each
such value. In other words we can consider subrows which are multiples of each

12

other as being equivalent, which amounts to considering the elements of the
finite projective space Ps−1

Fq
and seeking a Hamiltonian path through this set

instead of Fsq. By doing this, the second term nq
s/s of the complexity estimate

can be reduced to n(qs − 1)
/

s(q − 1), which is only 1
q−1 of the previous value.

The other nontrivial decision in the algorithm is determining which rows to
pivot in lines 2 and 3. One brute force method of doing this is to form the
(n− sk + s)× s submatrix







ask−s+1,sk−s+1 . . . ask−s+1,sk
...

. . .
...

an,sk−s+1 . . . an,sk







and reduce it to row-echelon form with Gauss elimination, while keeping track of
the permutations performed; the original s rows which are pivoted to the top s
rows of this submatrix are then known to be linearly independent. The number
of stripe-width row operations needed for this Gauss elimination is O(ns), using
O(ns2) field operations, which again is dominated by the O(n2) field operations
for the full-width row operations in the loop on line 7.

3.3 Optimality and a relation to addition chains

At the moment we do not know if this algorithm is optimal; in order to prove
optimality we would have to improve the lower bound given earlier. There is
a connection to a problem studied by several earlier authors which should be
mentioned here. LetM be a p1×p2 matrix with integer entries from {0, . . . , N}.
An addition chain for M is a sequence of vectors constructed by starting out
with the zero vector and the p2 standard unit vectors, then constructing each
new vector as the sum of two earlier vectors and stopping once the p1 row
vectors of M are members of the sequence. This problem is now studied over
the integers and not over a finite field but clearly an addition chain over Z also
defines an addition chain over Zp for each prime p.
Matrix reduction is not directly equivalent to addition chains but there is

clearly a connection between the way our algorithm treats an individual stripe
and an addition chain constructing the n × s submatrix defining the stripe
from the s unit vectors in the final diagonal block. If the sequence of row
operations performed on the stripe was done in reverse and all length s vectors
so constructed were kept we would have an extended addition chain for the
original stripe. Here extended addition chain means that we can also add a
multiple of one vector to another.
Pippenger studied addition chains in several papers [17, 18, 19] and found the

length of optimal chains for many ranges of the parameters. He used L(p1, p2, N)
to denote this length and found that for our relevant range of parameters,

L(p1, p2, 1) ∼
p1p2
log2 p1p2

, (8)

The cost in memory for an addition chain is the same as its cost in operations,
plus the number of initial vectors. For an addition chain using at most n vectors
in memory we find that p2 = O(log n). The cost of constructing a n × log2 n
stripe would thus be

L(n, log2 n, 1) ∼
n log2 n

log2(n log2 n)
∼ n, (9)

13

which turns out to be equivalent to the average cost per stripe for our algorithm
on a matrix with elements from F2, given a good choice of s.
There are two differences between the pure addition chain problem and our

treatment of individual stripes. First we are working over a field with non-zero
characteristic, which in principle could make things easier for us, as any fast
addition chain over Z can be adopted to fields of prime order but not necessarily
vice versa. However for q = 2 Pippenger’s lower bound proof works just as well
in Z2 as it does for 0/1 matrices over Z, so at least for q = 2 we cannot hope
to improve on Pippenger’s integer bound. For p1 = n and logn = o(p2) we find
that Pippenger’s addition chains uses fewer, by a factor of 2, operations than
our method but in this case they also use more than our restriction of n vectors
in memory.
Second, we are actually more restricted than in the addition chain problem.

When we process one stripe we must make sure not to undo our work in earlier
stripes and we thus have an interaction between the stripes which is not present
in the addition chain problem.
All in all we find that within the class of algorithms which perform reduction

by processing a matrix one stripe a time, never returning to a previous stripe,
our algorithm is optimal for q = 2.

3.4 A potential application: Integer factoring

In integer factoring algorithms such as the quadratic sieve, see e.g. [3], it is
necessary to perform row reduction on certain very large matrices over F2 as
one step of the algorithm. These matrices have a very distinct structure, be-
ing both very sparse and having most of their non-zero entries concentrated in
the first

√
M columns, where M is the total number of columns. Many dif-

ferent approaches to handling these matrices have been investigated, see [20]
and [16]. These methods focus on handling the sparse part of the matrix in an
efficient way, trying to save both memory and row operations by avoiding fill-in
of the sparse part while it is processed. After these methods have processed
the sparsest part of the matrix a dense part is left and is usually handled by
ordinary Gauss–Jordan reduction. In [12] it is reported that for a certain, at
the time very large, factoring instance a few hours of CPU time were used to
reduce the sparse part of the matrix and that several weeks of CPU time were
needed for the dense part.
Since our algorithm performs particularly well on dense matrices an interest-

ing possibility would be to replace the Gauss–Jordan step in the last paragraph
by striped matrix elimination. Conservatively estimating one multiplication
and addition per microsecond, three weeks would correspond to a matrix with
n ≈ 1.2 · 104, making log2 n > 13 and s ≈ 10; a rather nice speed-up, and ac-
tually better than the vulgar estimate nlog2 8/7 ≈ 6 on what one may gain from
Strassen’s fast matrix multiplication for matrices of this size. If the overhead
involved in our algorithm can be managed well in an actual implementation
this would lead to a considerable speed-up of the processing of the dense part
of these matrices.

14

4 The optimal results for small n and q

While our bounds for D(n, q) for a fixed q are quite good they are still far from
giving us the exact values of D(n, q), and the bounds for growing q even more so.
In order to determine the exact values for small n and q and get a more detailed
picture of how the Cayley graph develops we have performed a computational
investigation as well.

4.1 Experimental set-up

We wrote a C program which performs a breadth first search from the identity
matrix. In the standard way the program keeps track of a ‘state’ of each vertex—
whether the vertex is in the current level, the next level, some earlier level, or
has not yet been seen—whereas there is no explicit representation of edges. In
order to manage the larger graphs the vertex states were coded using only 2
bits of storage per vertex. This was done by allocating a large bit vector and
then assigning to each matrix with nonzero columns a pair of consecutive bits
within this vector; in Table 1 we can see the memory requirements for small
n and q. As there are qn − 1 different values for a nonzero column, a unique
position for a matrix could be computed simply by interpreting its n columns as
n digits in base qn− 1. This use of column vectors also simplified implementing
the row operations, as we could tabulate the function saying “row operation i
transforms the column with number j to the column with number k” and thus
compute the positions of all neighbours of a given vertex through elementary
arithmetic and table look-ups.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

q = 2 < 1 < 1 < 1 < 1 15 1.2 · 105
q = 3 < 1 < 1 < 1 194 3.4 · 107
q = 4 < 1 < 1 < 1 2.6 · 105
q = 5 < 1 < 1 36
q = 7 < 1 < 1 7725
q = 8 < 1 < 1
q = 9 < 1 < 1
q = 11 < 1 < 1
q = 13 < 1 3
q = 16 < 1 16
q = 17 < 1 28
q = 19 < 1 76
q = 23 < 1 420
q = 25 < 1 889

Table 1: Memory requirement for the Cayley graph in gigabytes.

As the search progresses the program outputs the number of vertices that
belong to each distance class in the graph; these data are shown in tables 3–7.
An unusual feature is that some graphs have one very large distance class (see
e.g. Table 4) that can account for well over half the vertices of that graph. In
these cases we could save a large amount of work by first searching forward and
then backward. During the first phase (forward search) the program constructs

15

the next distance class by applying all generators in our set S to each element in
the current distance class. During the second phase (backward search), which
starts when a predetermined distance class K is reached, the program instead
applies the generators to all matrices not yet encountered in order to see if they
have a neighbour in the previously constructed distance class; in this phase the
processing of a vertex stops as soon as a neighbour in the lower distance class
is found.
Our program was also parallelised using OpenMP. The computations were

performed on three different SGI Origin machines. The largest case was the
computation for GL(3, 23) which in total used over 430 gigabytes of RAM,
running on over 400 processors for several days and accumulating a run time of
4.1 CPUyears.
The main obstacle to proceeding to even larger graphs was the amount of

RAM available. Our program will access different parts of the RAM in a very
unpredictable way so a fast shared RAM is essential for this search, and few
current computers have shared RAMs larger than 512 Gb.

4.2 Results

In Table 2 we have listed the diameters for all Cayley graphs which could be
reached with the computational resources available to us. In tables 3–7 we have
listed the sizes of the distance classes in the Cayley graphs, i.e., the number of
vertices at a given distance from the identity matrix.

n = 2 n = 3 n = 4 n = 5 n = 6
q = 2 2 4 7 10 13
q = 3 3 6 9 12
q = 4 4 7 11
q = 5 4 7 11

7 6 q 6 23 4 8

Table 2: Diameter of the Cayley graph

As we can see from Table 2 the diameter is monotone in both n and q, as
we expected, and we state this as a conjecture.

Conjecture 4.1. D(n, q) is monotone in both n and q.

If we look at the diameters of the graphs for q = 2 in Table 2 we find that

the main term of our asymptotic upper bound n2

log2 n
in fact agrees remarkably

well with the exact values for small n, predicting 4, 5, 8, 10, 13 as the first few
diameters. The sizes of the distance classes also agrees well with our concentra-
tion result. For n = 4, 5, tables 5 and 6, we see an exponential like drop in the
size of the distance class as we move away from the largest one.
If we assume that Conjecture 4.1 is true, Table 3 gives us a complete display

of the phenomena expected to appear as q increases for a fixed n. For q = 2, 3
the diameter of D(2, q) is still less than 4. For q = 4 we find the first matrices
requiring 4 row operations, and we have qa(2) = 4. As q continues to increase
the last distance class continues to grow and for q = 13 it contains more than
half of the vertices, giving us qs(2) = 13. We have performed computations for
larger q than those shown in this table as well, and as q continues to increase

16

n = 2
Level q = 2 q = 3 q = 4 q = 5 q = 7 q = 8 q = 9 q = 11 q = 13 q = 16
0 1 1 1 1 1 1 1 1 1 1
1 3 7 11 15 23 27 31 39 47 59
2 2 23 54 103 239 326 431 679 983 1542
3 17 110 313 1249 2034 3161 6385 11257 22106
4 4 48 504 1140 2136 6096 13920 37492

Table 3: Size of the distance classes for n = 2

a larger and larger proportion of the vertices belongs to the last distance class,
just as expected.

n = 3
Level q = 2 q = 3 q = 4 q = 5 q = 7 q = 8 q = 9
0 1 1 1 1 1 1 1
1 9 18 27 36 54 63 72
2 38 182 404 728 1634 2216 2900
3 78 1156 3968 9894 33968 53772 81058
4 42 4287 26046 93813 512307 952710 1671753
5 5130 92950 545628 5245120 11675814 24409482
6 458 57846 802306 21204546 63663690 171433796
7 198 35594 6785764 39018738 141869106
8 734 12708 187512

n = 3
Level q = 11 q = 13 q = 16 q = 17 q = 19 q = 23
0 1 1 1 1 1 1
1 90 108 135 144 162 198
2 4526 6512 10160 11564 14630 21842
3 158844 275006 536516 653178 930548 1700256
4 4152327 8702397 21299670 27845457 44776143 100461507
5 78654196 202545280 629821474 888997108 1623054880 4509563860
6 798714832 2706903968 11370766138 17699483800 37684754564 134745058836
7 1232098786 6628001012 47971230510 83878534274 228871419044 1215099678186
8 10492398 179983508 4163519396 8707753322 36587912588 364987070066

Table 4: Size of the distance classes for n = 3

So far the exact values all agreed well with our expectations, however the
data for n = 3 came as a surprise to us. As q increases from 2 to 7 the diameter of
the Cayley graph rapidly grows from 4 to 8, however once that diameter has been
reached the graphs seem very reluctant to rise any further. The computation
for n = 3 was pushed to higher and higher q in the hope of being able to find the
value of qa(3), probably the last qa(n) for which this is computationally feasible,
but as the table shows we have not succeeded. When q was increased a larger
and larger part of the vertices was found in the last three, and later the last
two, distance classes, but not a single vertex appeared at distance 9. It is quite
possible that there is some underlying algebraic property preventing matrices
at large distance when q is small, relative n, but so far we have not found one.
It would be interesting to find shaprper bounds for qa(n). By Theorem 2.4 we

17

know that qs(3) must be at least 15, but here this lower bound seems to be
much lower than the actual value.
For our larger n, tables 5–7, the graphs look similar to the asymptotic pic-

ture for a fixed q, i.e., we see a diameter noticeably less than n2, the largest
distance classes are several steps in from the extremal ones, and most matrices
are concentrated close to the largest class.

n = 4
Level q = 2 q = 3 q = 4 q = 5
0 1 1 1 1
1 18 34 50 152
2 167 665 1439 1964
3 1010 9370 30318 49902
4 3918 100139 503842 966269
5 8572 794654 6654868 15407781
6 6301 4305691 67436357 203070282
7 173 12199038 470243499 2124066449
8 6778876 1567458540 16691702892
9 72652 845884998 75238909564
10 2886870 48695739370
11 18 148496842

Table 5: Size of the distance classes for n = 4

n = 5
Level q = 2 q = 3
0 1 1
1 30 55
2 475 1735
3 5230 40735
4 43004 775109
5 265000 12302561
6 1176535 162811445
7 3336505 1761590085
8 4334920 14842741840
9 837280 86149921538
10 380 245807452970
11 126205337589
12 623498577

Table 6: Size of the distance classes for n = 5

4.3 Extremal matrices

As mentioned in the introduction it would be of great interest to be able to
construct an explicit family of n×nmatrices which cannot be row reduced to the
identity matrix in a linear number of row operations. So far constructing even a
family which requires cn operations for some large constant c seems challenging,
despite the fact that almost surely D(Mn) = Ω(n2/ logq n) for {Mn}∞n=1 any

18

Level n = 6 q = 2
0 1
1 45
2 1075
3 18195
4 240934
5 2589042
6 22779975
7 161946260
8 893603745
9 3517544498
10 8207684400
11 6816796888
12 535485765
13 18937

Table 7: Size of the distance classes for n = 6

infinite sequence where Mn ∈ GL(n, q) is chosen independently and uniformly
at random.
We have not been able to construct a family of the kind described, but for

small n and q our program can produce the full set of extremal matrices, i.e.
matricesM such that D(M) = D(n, q). In Table 8 we have listed a few examples
for q = 2. For each size we have picked matrices with minimal and maximal
number of non-zero entries. For both n = 3 and n = 4, but not for n = 5, we
also found that J−I is extremal, where J is the all ones matrix. Note that since
D(M) = D(M−1) the inverses of all these matrices are also extremal matrices.
So, two natural problems still remain

Problem 4.2. Find an explicit construction for a sequence of matrices {Mn},
where Mn has side n, such that n = o (D(Mn))

Problem 4.3. What is the complexity of computing D(M)?

5 Matrices over semifields

As we have seen, one impediment to the experimental side of our work has been
the lack of computers with enough RAM to handle the very large graphs that
are involved when q grows, so we have examined also other ways to vary the
base field. One is to consider other algebraic structures than fields as domains
from which to fetch the matrix elements. Such a change of domain also helps
elucidate to which extent properties of the elimination problem depend on the
algebraic structure of the chosen domain, rather than just its size.
Row operations are defined in terms of addition and multiplication, so those

two operations are indispensable, which means the thing replacing the field will
at least have to be some kind of ring. Furthermore the Gauss–Jordan algorithm,
which provides the constant upper bound on the graph diameter, requires that
there exists multiplicative inverses, so the thing replacing Fq should still be
some kind of field. The first generalisation of the (commutative) field concept

19

is the skew field or noncommutative division ring, but Wedderburn’s theorem
says all finite division rings are commutative, so we have to go even further to
get anything new.
The next generalisation are the semifields [9], where one has abandoned also

associativity. Finite semifields are plenty, but the only ones small enough to
currently allow any experiments for n > 2 are those with 16 elements, which
have been completely enumerated by Kleinfeld [8]. Our experiments here have
not yet exhausted the possibilities, but they point to some interesting features.

5.1 Row operations and their graph

First it must be observed that the problem statement is no longer as straightfor-
ward as when one works over a field. The basic problem is that since a semifield
T is not associative, matrix multiplication will not be associative either, and
hence GLn(T) is typically not a group. This does not prevent defining a “Cay-
ley graph” whose set of vertices is GLn(T) and where two vertices are adjacent
if one is mapped to the other by an elementary row operation, so that is still
what we do, but it means parts of the theory of Cayley graphs need no longer
apply, e.g. one can no longer prove transitivity of these graphs simply by using
multiplication (on the right) by a matrix as the explicit automorphism.
Having made that decision, there is next the problem of defining the element-

ary row operations. Since T is not commutative the operations of ‘multiply from
the left’ and ‘multiply from the right’ are distinct, which in principle means one
can close to double the number of row operations by considering the distinct left
and right forms of the ‘add multiple of row to row’ and ‘multiply row by’ opera-
tions (this would not quite double their number though, since 1 still commutes

n = 2

(

1 1
1 0

)(

0 1
1 1

)

n = 3





1 1 1
1 0 0
0 1 0









0 1 1
1 0 1
1 1 1









1 1 0
1 1 1
0 1 1





n = 4









1 1 1 0
1 1 0 1
0 1 0 0
1 0 0 0

















1 1 1 0
1 1 0 0
0 0 1 1
0 1 1 1

















1 0 1 1
1 1 0 1
0 1 1 1
1 1 1 1









n = 5













0 1 0 0 1
0 0 1 1 1
1 1 0 1 1
1 0 0 0 1
0 1 1 0 0

























1 0 1 1 1
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
1 1 1 0 1

























1 1 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0
1 0 1 1 1













Table 8: Some extremal matrices for q = 2

20

with everything and thus would have identical left and right forms). Here we
have chosen to only include the left forms however, as these are the ones which
can be represented as multiplication by an elementary matrix, even if that mat-
rix multiplication is not associative. Note that this nonassociativity means that
the composition of two row operations need no longer be representable as mul-
tiplication by the product of the two corresponding elementary matrices.
A more subtle issue arises with ‘multiply row by’ operations, in that the set

of these no longer need to be closed under inversion. Over a field the inverse op-
eration to ‘multiply by r’ is ‘multiply by r−1’, but the proof that this returns an
arbitrary element x to itself is r−1(rx) = (r−1r)x = x which uses associativity,
and hence it will not hold in a general semifield T . Again there is a possibility
to add ‘divide by r’ as another class of elementary row operations, but for sim-
plicity we have instead chosen to drop the ‘multiply row by’ operations entirely.
Seemingly this should mean the set of vertices in our Cayley graph are more like
some kind of SLn(T) than a GLn(T), but in fact the number of vertices is closer
to what one would expect from GLn(T), so the distinction between the two
groups probably breaks down somewhere along the generalisation to semifields.
The ‘add multiple of row to row’ operations do not similarly get into problems,
because here it is addition that needs to be associative, which it still is.

Definition 5.1. Let M(n, T) denote the graph whose set of vertices is the set
of n× n matrices with elements from T and where two vertices are adjacent if
there exists an ‘add to row i the multiple r ∈ T of row j’ or ‘interchange rows i
and j’ operation that changes one vertex into the other. Denote by GL†n(T) the
set of vertices in the component of M(n, T) that contains the identity matrix I.

We have only studied GL†n(T) for the five semifields (known as T24, T25, T35,
T45, and T50; for exact definitions of these we refer to [8]) of order 16 that are
F4-algebras, but there it displays a very striking pattern.

Observation 5.2. For any T ∈ {T24, T25, T35, T45, T50},
∣

∣GL†2(T)
∣

∣ = 64260 = (q2 − 1)(q2 − p), (10)
∣

∣GL†3(T)
∣

∣ = 68367499200 = (q3 − 1)(q3 − p)(q3 − p2), (11)

where q = 16 = |T | and p = 4 = |F4|.
Proof. For (10), add up the columns in Table 9. For (11), do the same for
Table 10.

There exists a very direct interpretation of the products
∏n−1
i=0 (q

n − pi) as
the number of n-tuples of elements of Tn that are linearly independent over
F4. This indicates that this may be precisely an alternative characterisation of
GL†n(T), so we state this as a conjecture.

Conjecture 5.3. If T is a semifield with centre K 6= T , then for all n > 2,
GL†n(T) =

{

A ∈ Tn×n the columns of A are linearly independent over K
}

.
(12)

Below, we are able to prove this conjecture for T ∈ {T24, T25, T35, T45, T50},
but leave it open for other semifields. It should be straightforward to verify for
|T | = q = 16 and n ∈ {2, 3}, but is beyond the current computers for n > 3
or n = 3 and q > 16. Luckily, for any given semifield T , the conjecture can be
decided from the case n = 2!

21

n = 2
Level T24 T25 T35 T45 T50
0 1 1 1 1 1
1 31 31 31 31 31
2 478 478 478 478 478
3 6230 6140 5782 6336 6216
4 36093 37600 33095 38138 37116
5 21396 19994 24849 19268 20409
6 31 16 24 8 9

Table 9: Size of the distance classes for n = 2 and semifields

n = 3
Level T24 T25 T35 T45 T50
0 1 1 1 1 1
1 93 93 93 93 93
2 5666 5666 5666 5666 5666
3 251292 251022 249660 251034 251826
4 9832323 9765156 9613359 9829032 9869298
5 370707801 360824106 351848817 371064842 372641521
6 11832755153 11321169174 11018482054 11831033570 11894787095
7 56036224680 56495526044 56734090686 56050421202 55980687767
8 117722191 179957938 253208864 104893760 109255933

Table 10: Size of the distance classes for n = 3 and semifields

5.2 Characterisation of reducible matrices

Why do we above require the columns to be linearly independent? Wouldn’t
it be more natural to use the condition that the rows must be linearly inde-
pendent? It may certainly feel that way, but this latter condition in fact does
not characterise GL†n(T), as is easy to see. Let T and K be as above, and let
α ∈ T \K be arbitrary. Then the rows of the matrix

(

0 1
0 α

)

are linearly independent over K, and it is easy to see that no row operation can
change a zero column to a nonzero column. As all columns of the identity I are
nonzero, it follows that the above matrix is not in GL†n(T).
What then about the transpose

(

0 0
1 α

)

of the above matrix—shouldn’t that also be disqualified from belonging to
GL†n(T) by its zero row? Actually this need not be the case, as K-linear spans
of elements of Tn need not be closed under multiplication by elements of T \K.
It is fairly easy to find a multiple of the (1, α) row that is K-linearly independ-
ent from (1, α) (any T \ K multiple will do) and adding this multiple of the
second row to the first row will make the two rows K-linearly independent. The

22

property of rows being K-linearly dependent or not is simply not preserved by
row operations. The situation for columns is more familiar.

Lemma 5.4. Let T be a semifield with centre K. If A ∈ Tm×n is a matrix
whose columns are linearly independent over K, then any matrix A′ that arises
from A by applying one elementary row operation also has columns that are
linearly independent over K. Consequently the set

{

A ∈ Tn×n the columns of A are linearly independent over K
}

(13)

is closed under elementary row operations and

GL†n(T) ⊆
{

A ∈ Tn×n the columns of A are linearly independent over K
}

.
(14)

Proof. Consider first how elementary row operations act on individual columns
of a matrix. Multiplying a scalar α ∈ T by some matrix element ai,j ∈ T is a K-
linear operation, so all elementary row operations are, when applied to a single
column, K-linear operators Tm −→ Tm. As such the elementary row operations
must preserve any linear dependency that exists between the columns of A. The
elementary row operations are furthermore all invertible. Hence an elementary
row operation can, when applied to the matrix A, neither destroy nor create
any K-linear dependency between its columns.
It follows that the property of an element of Tn×n to have K-linearly in-

dependent columns is preserved by elementary row operations, and hence the
set (13) of all matrices with this property is closed under such operations. Fi-
nally, GL†n(T) is by definition the smallest set of matrices that contains the
identity matrix and is closed under elementary row operations, whence it must
be contained within the set (13) as (14) claims.

From the counting results in Observation 5.2 it now follows that Conjec-
ture 5.3 indeed holds for T ∈ {T24, T25, T35, T45, T50} and n ∈ {2, 3}, but the
cases n > 2 can in fact always be reduced to the case n = 2.

Lemma 5.5. Let T be a semifield with centre K. If

GL†2(T) =
{

A ∈ T 2×2 the columns of A are linearly independent over K
}

(15)
then equality in (12) holds also for n > 2. More precisely, if k > 4 and every
matrix A ∈ T 2×2 with K-linearly independent columns can be transformed into
the identity matrix by a sequence of at most k row operations, then every matrix
A ∈ Tn×n with K-linearly independent columns can be transformed into the
identity matrix by a sequence of at most n2 +

(

k−1
2

)

row operations.

Proof. The proof consists simply of applying a modified (to handle the extra
situations brought up because T is a semifield) Gauss–Jordan elimination pro-
cedure to a matrix A. Thus one proceeds column by column, transforming
diagonal elements to 1s and off-diagonal elements to 0s. Observe that the prop-
erty of the matrix A to have columns that are linearly independent over K by
Lemma 5.4 is an invariant of the process.
Suppose the current column is column j < n, i.e., ai,i = 1 for all i < j and

ai,l = 0 for all i < j and l 6= i. There are then a number of possibilities for

23

what to do, depending on the contents of column j, and they will be described
in order of increasing difficulty. If the diagonal element aj,j of the current
column is already 1 then one can go ahead with zeroing any off-diagonal (i 6= j)
element just as in ordinary Gauss–Jordan elimination, i.e., by adding to row i
the multiple −ai,j of row j. This costs at most n − 1 row operations for the
entire column.
If aj,j 6= 1 and ai,j 6= 0 for some i > j then one additional row operation

suffices to transform this situation into the previous one, yielding a total cost
of n operations for this column. This first row operation is to add to row j
some multiple r of a row i, where i > j is such that ai,j 6= 0 and r is the
semifield element that solves rai,j = 1− aj,j . In an ordinary field or skew field
that r can be calculated as (1 − aj,j)a−1i,j , but this need not be the case in a
semifield, because (rai,j)a

−1
i,j is not necessarily the same thing as r. Since the

multiplication table of a semifield still is a latin square however, there will be
an r which solves this equation, and hence there is an ‘add multiple of row i to
row j’ operation that changes aj,j to 1.
Even the case that aj,j /∈ {0, 1} and ai,j = 0 for all i > j is when j 6 n− 2

possible to handle in at most n row operations. The trick is to first manufacture
a nonzero aj+1,j by adding row j to row j+1 and then proceed as in the previous
case; row j + 1 is then changed twice, but on the other hand row j + 2 is not
changed so the total still cannot exceed n. However for j = n− 1 this may cost
n+1 row operations, which we have to account for when summing up the total
below.
What remains for columns j < n is the case that ai,j = 0 for all i > j. Had

T been a field then T = K and this possibility would have been ruled out by
the fact that column j is not in the linear span of columns 1 through j − 1, but
when T is not a field then it remains an important possibility, at least for j > 1,
so what can be done? Since the K-linear span of columns 1 through j−1 is the
set of columns with zeroes in rows j through n and elements from K in rows 1
through j − 1, it follows that ai,j ∈ T \K for some i < j. Consider the 2 × 2
submatrix consisting of rows and columns i and j:

(

1 ai,j
0 0

)

This has K-linearly independent columns, whence there is a sequence of at most
k elementary row operations that transforms it into the identity. Applying the
same sequence of elementary row operations to rows i and j of A thus leaves
column i unchanged while setting aj,j = 1 and ai,j = 0, after which the rest of
the column can be zeroed in at most j − 2 operations. The total cost for this
column is thus j + k − 2 operations, which is 6 n for all j 6 n− k + 2.
The last column j = n is special in that there of course does not exist a row

j + 1 which one may add back to row j to make aj,j = 1 as above, but one

may still rely on the condition about GL†2(T) and consider the 2× 2 submatrix
consisting of rows and columns i and n for some suitable i < n. If an,n = 0
then one chooses i as above, and otherwise the choice of i is arbitrary. The total
number of row operations required for column n is at most n+ k− 2, and after
completing these then A has been transformed into the identity matrix. The

24

total number of row operations performed is thus at most

n−2
∑

j=1

max{n, j + k− 2}+max{n+ 1, n− 1 + k− 2}+ n+ k− 2 = n2 +
(

k − 1
2

)

,

where the assumption that k > 4 is used for the second term.

Since the conditions in this lemma are fulfilled for T ∈ {T24, T25, T35, T45, T50},
it is now established that Conjecture 5.3 is true for these semifields. Verifying
this condition also for other semifields is probably rather easy, but we shall not
do so here as that matter is more about structure theory for semifields than
it is about row operations on matrices. It may furthermore be observed that
the condition of Lemma 5.5 is clearly false for T = Fq whenever q > 3, as then

the determinant detA = ±1 for all A ∈ GL†n(Fq) despite there being invertible
matrices with other values of detA. If something like a determinant can be
defined over semifields, then apparently that cannot be as predictably affected
by row operations as the determinant over a field is.
The form of the bound in Lemma 5.5—n2 plus a constant that depends

only on T—is also strict enough for the complexity arguments in Section 3
to go through even for matrices over a semifield; the parts of the algorithm
using Gauss–Jordan elimination of submatrices can instead be carried out as in
Lemma 5.5 without any change in the order of complexity, and are thus still
dominated by other parts of the algorithm. Hence the asymptotic result that
the diameter is 6

(

1 + o(1)
)

n2/ logq n continues to hold for GL
†
n(T). While

this result (as far as we can tell) does not have anything like the immediate
computational applications of its counterpart over a field, it does remain a fairly
tight bound on the diameter of a large family of explicitly constructible graphs.

Acknowledgements

The substantial amount of computer time used for the larger cases of the exact
computational results were made possible by a special grant by NWO/NCF,
The Netherlands, as a gesture in the European spirit and in remembrance of
Anna Lind. We are also grateful for the computer time granted at NTNU,
Trondheim, Norway and at NSC, Linköping, Sweden.
We would like to thank Daniel Bernstein for providing the reference to the

original works of Pippenger. Finally we would like to thank our referee for
numerous suggestions and prompt replies.

References

[1] J.R. Bunch, John.E. Hopcroft. Triangular factorization and inversion by
fast matrix multiplication. Math. Comp., 28:231–236, 1974.

[2] P. Bürgisser, M. Clausen, M. Amin Shokrollahi. Algebraic complexity
theory, volume 315 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Ber-
lin, 1997.

25

[3] R. Crandall, C. Pomerance. Prime numbers, A computational perspective.
Springer, New York, second edition, 2005.

[4] L. Euler. De mirabilis proprietatibus numerorum pentagonalium. Acta
Academiae Scientarum Imperialis Petropolitinae, 4:56–75, 1783.

[5] W. T. Gowers. Rough structure and classification. Geom. Funct. Anal.,
(Special Volume, Part I):79–117, 2000. GAFA 2000 (Tel Aviv, 1999).

[6] J. Harris. Algebraic geometry, volume 133 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1995.

[7] M. Kassabov, T.R. Riley. Diameters of cayley graphs of SLn(Z/kZ), 2005.
http://arXiv.org:math/0502221.

[8] E. Kleinfeld. Techniques for enumerating Veblen-Wedderburn systems. J.
Assoc. Comput. Mach., 7:330–337, 1960.

[9] D.E. Knuth. Finite semifields and projective planes. J. Algebra, 2:182–217,
1965.

[10] D.E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 2 :
Generating All Tuples and Permutations. Wiley-Interscience , New York,
first edition, 2005.

[11] J. Lauri, Raffaele Scapellato. Topics in graph automorphisms and recon-
struction. Cambridge University Press, Cambridge, 2003.

[12] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard. The
factorization of the ninth Fermat number. Math. Comp., 61(203):319–
349, 1993.

[13] M. W. Liebeck, A. Shalev. Diameters of finite simple groups: sharp bounds
and applications. Ann. of Math. (2), 154:383–406, 2001.

[14] R. Motwani, P. Raghavan. Randomized algorithms. Cambridge University
Press, Cambridge, 1995.

[15] J. Nagura. On the interval containing at least one prime number. Proc.
Japan Acad., 28:177–181, 1952.

[16] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic
significance. In Advances in cryptology (Paris, 1984), volume 209 of Lec-
ture Notes in Comput. Sci., pages 224–314. Springer, Berlin, 1985.

[17] N. Pippenger. On the evaluation of powers and related problems (prelim-
inary version). In 17th Annual Symposium on Foundations of Computer
Science (Houston, Tex., 1976), pages 258–263. IEEE Comput. Soc., Long
Beach, Calif., 1976.

[18] N. Pippenger. The minimum number of edges in graphs with prescribed
paths. Math. Systems Theory, 12:325–346, 1979.

[19] N. Pippenger. On the evaluation of powers and monomials. SIAM J.
Comput., 9:230–250, 1980.

26

[20] C. Pomerance, J. W. Smith. Reduction of huge, sparse matrices over finite
fields via created catastrophes. Experiment. Math., 1:89–94, 1992.

[21] T. R. Riley. Navigating in the Cayley graphs of SLN (Z) and SLN (Fp),
2005.

[22] J. H. van Lint, R. M. Wilson. A course in combinatorics. Cambridge
University Press, Cambridge, second edition, 2001.

[23] A. Wigderson. Arithmetic complexity - a survey (lecture notes), 2001.

27

