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Abstract

We establish a new lower bound on the l-wise collective minimum degree which
guarantees the existence of a perfect matching in a k-uniform hypergraph, where
1 ≤ l < k/2. For l = 1, this improves a long standing bound by Daykin and
Häggkvist [4]. Our proof is a modification of the approach of Han, Person, and
Schacht from [8].

In addition, we fill a gap left by the results solving a similar question for the
existence of Hamilton cycles.

1 Introduction

Recently there has been a lot of interest in Dirac-type properties of uniform hypergraphs.
With this name we describe a general class of problems and results relating minimum
degrees of k-uniform hypergraphs to the existence of a Hamilton cycle (of some kind)
or a perfect (or near perfect) matching, see, e.g., [12], [15], [19], and [14], [17], [20], [2],
[21], [8], resp. For some complexity aspects of these problems, see [10], [22], and [11].

Besides the celebrated theorem of Dirac [5] for graphs, the first result of this kind was
obtained already by Daykin and Häggkvist in 1981 [4], who proved that in order to have
a perfect matching in a k-uniform hypergraph H with n vertices, where n is divisible
by k, it is sufficient if the minimum degree in H is greater than (1 − 1/k)

((
n−1
k−1

)− 1
)
,

about the k−1
k

fraction of the maximum possible vertex degree. They also gave a separate
result for the case of k-partite hypergraphs. Recently, it was proved by Han, Person,
and Schacht [8], Theorem 6, that for k = 3 the fraction 2

3
can be replaced by 5

9
+ ε,

which, moreover, is asymptotically best possible.
Given a k-uniform hypergraph H and an integer l, 0 < l < k, let δl(H) be the largest

integer d such that every l-element set S of vertices of H has degree degH(S) ≥ d, that is,
S is contained in at least d edges. In particular, δ1(H) = δ(H) is the ordinary minimum
vertex degree.

In [8], the case 1 ≤ l < k/2 is studied. At the other extreme lies the equally
interesting case l = k − 1, in which the threshold value of δl(H) guaranteeing a perfect
matching in H has been determined precisely [20]. Later Pikhurko [17] proved that the
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threshold value of δl(H) for all l ≥ k/2 is asymptotically 1
2

(
n−l
k−l

)
. The case of l < k/2

seems to be harder. In addition to the above mentioned result for k = 3 and l = 1, paper
[8] contains the following general theorem, which for l = 1 coincides asymptotically with
the almost thirty years old bound of Daykin and Häggvist.

Theorem 1 ([8]). For all integers k and l, where 1 ≤ l < k/2, and all ε > 0, there is n0

such that if H is a k-uniform hypergraph on n > n0 vertices, with n divisible by k and

δl(H) ≥
(

k − l

k
+ ε

)(
n− l

k − l

)
,

then H contains a perfect matching.

In this paper we improve the above result.

Theorem 2. For all integers k and l, where 1 ≤ l < k/2, and all ε > 0, there is n0

such that if H is a k-uniform hypergraph on n > n0 vertices, with n divisible by k and

δl(H) ≥
(

k − l

k
− 1

kk−l
+ ε

)(
n− l

k − l

)
,

then H contains a perfect matching.

It is conjectured in [8] that the optimal bound on δl(H) guaranteeing a perfect
matching in H is asymptotically equal to

max(1/2, 1− (1− 1/k)k−l)

(
n− 1

k − l

)
+ o(nk−l). (1)

For l < k/2, this conjecture is still open except the smallest case k = 3 and l = 1.
The proof in [8] uses the idea of absorption introduced in [19] and [20]. In this paper

we simplify the proof from [8]. Most notably, we do not need Goodman’s result on the
number of triangles in a dense graph, but instead we use the Erdős counting lemma for
partite, unform hypergraphs (see Lemma 1 below). In addition, in Section 2 we prove a
sharp result about edge maximal partite hypergraphs with a given size t of a maximum
matching (Theorem 3). When t = 1 we obtain a description of the extremal sets in a
special case of a result of Frankl [7]. These new tools allow us to extend the method
from [8], Theorem 6, to other instances of k and l < k/2. The main proof is presented
in Sections 3. In Section 4, we further improve our bound in the smallest open case:
k = 4 and l = 1.

In Section 5, we give a small contribution to the complete solution of a similar
question for the existence of a Hamilton cycle. Dirac-type problems for Hamilton cycles
are related to those for perfect matchings, both by the results obtained and by the
methods of proof. Since they are much harder to tackle, the existing results limit
themselves to only one case: l = k − 1. On the other hand, unlike matchings, there
are several notions of a hypercycle. Besides the classic notion of Berge cycle, the most
studied case is that of (k, r)-cycles, 0 ≤ r ≤ k − 1, defined as k-uniform hypergraphs
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whose vertices can be ordered cyclically in such a way that the edges are segments of
that cyclic order and every two consecutive edges share exactly r vertices.

A Hamilton r-cycle is then defined as an (k, r)-cycle in a k-uniform hypergraph H
containing all vertices of H. A necessary condition is that k− r divides |V (H)|, and for
r = 0 this is a perfect matching. For k, r, and n, satisfying k − r|n, let hr(k, n) be the
smallest integer h such that δk−1(H) ≥ h implies that an n-vertex k-uniform hypergraph
H contains a Hamilton r-cycle.

It was proved in [19] that hk−1(k, n) ∼ 1
2
n. Since for k|n we have 1

2
n−k ≤ h0(k, n) ≤

hk−1(k, n) (the lower bound by a simple construction, cf. [14] or [20]), it followed
that h0(k, n) ∼ 1

2
n too (as mentioned above, h0(k, n) was determined exactly in [20]).

Moreover, trivially, if k − r|k then h0(k, n) ≤ hr(k, n), and if k − r|n then hr(k, n) ≤
hk−1(k, n). Consequently, if, in addition, k|n then hr(k, n) ∼ 1

2
n as well.

On the other hand, the results from [15, 9, 13] show that

hr(k, n) ∼ n

d k
k−r
e(k − 1)

,

whenever k − r 6 |k (and k − r|n, of course), leaving only a small gap in our knowledge
about Dirac thresholds for Hamilton r-cycles in k-uniform hypergraphs. Namely, what
is the asymptotic value of hr(k, n) when k − r|n, k − r|k but k 6 |n (e.g., k = 6, r = 4,
and n = 20)? Note that all counterexamples existing in the literature assume that k|n
(cf. [9], the discussion following the proof of Fact 4, and [13], Proposition 2.2). Here we
close this gap by providing ‘the missing piece in the puzzle’.

Proposition 1. If k−r|n and k−r|k then hr(k, n) ≥ 1
2
n−k. Consequently, hr(k, n) ∼

1
2
n, regardless whether k|n or not.

Throughout the paper k-uniform hypergraphs will be called k-graphs.

2 Extremal k-partite k-graphs without matchings of

given size

We first determine the maximum number of edges in balanced k-partite k-graphs without
a matching of a given size. For t = 1 this result follows from a more general theorem of
Frankl [7] on intersecting families.

Fact 1. For all integer k ≥ 1, n ≥ 1, and 1 ≤ t ≤ n − 1, the maximum number of
edges in a k-partite k-graph with n vertices in each class and no matching of size t + 1
is tnk−1.

Proof. By Theorem 3 of [3] the complete k-partite k-graph K(n, . . . , n) with n vertices
in each part has chromatic index nk−1, that is, it has a factorization. Hence the edge set
of this complete hypergraph can be partitioned into nk−1 disjoint perfect matchings Mi,
i = 1, . . . , nk−1. If H is a k-partite k-graph with n vertices in each class and more than
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tnk−1 edges, then by the Pigeon-hole Principle for some i we must have |Mi ∩ H| > t,
which yields a matching of size t + 1 in H, a contradiction.

On the other hand, the k-partite k-graph Kt := K(t, n, . . . , n)∪(n−t)K1 has exactly
tnk−1 edges and no perfect matching of size t + 1.

In our main proof, we will need a structural result saying that for n ≥ 3 the above
defined hypergraph Kt is the only extremal k-partite k-graph. As our next example
shows the assumption that n ≥ 3 is crucial.

Example 1. For k ≥ 3, k odd, consider a k-partite k-graph H with partition V (H) =
V1 ∪ · · · ∪ Vk, where Vi = {ui, vi}, i = 1, . . . , k, and with the edge set E(H) consisting
of all k-subsets containing at least (k + 1)/2 vertices of {u1, . . . , uk}. Then, the number
of edges in H is

∑k
i=(k+1)/2

(
k
i

)
= 2k−1 and the set of edges is an intersecting family,

that is, there is no matching of size 2. Thus, besides K1, also H is extremal in this
case. (For k even, we include into H, in addition, a half of all k-subsets containing
precisely k/2 vertices of {u1, . . . , uk}, making sure that no set is included together with
its complement, so that H is still intersecting.)

Our next result could be reformulated in terms of König’s property stating that the
size of a maximum matching equals the size of a minimum vertex cover (note that the
class of size t in Kt forms a unique minimal vertex cover of Kt). In general, for k-partite
k-graphs König’s property does not hold, and is replaced by Ryser’s conjecture (cf. [1]
and [16]).

Theorem 3. For all integer k ≥ 1, n ≥ 3, and 1 ≤ t ≤ n − 1, the k-graph Kt is (up
to isomorphism) the only k-partite k-graph with n vertices in each class and tnk−1 edges
which contains no matching of size t + 1.

Proof. We prove the statement by induction on k. For k = 2, by König’s theorem there
is a vertex cover in H of size t, but for t vertices to cover all tn edges these vertices
have to be in the same partition class. Thus, H = Kt. Now assume that the statement
is true for all 2 ≤ k′ ≤ k − 1 and consider a k-partite k-graph with n vertices in each
class, no matching of size t + 1 and tnk−1 edges. Denote the partition classes of H by
V1, . . . , Vk.

For a matching M in the complete (k − 1)-partite (k − 1)-graph K(V1, . . . , Vk−1)
define an auxiliary bipartite graph GM with vertex classes M and Vk such that there is
an edge {e, v}, e ∈ M , v ∈ Vk if and only if e ∪ {v} ∈ H.

Let M1, . . . , Mnk−2 be a factorization of K(V1, . . . , Vk−1). For each i put Gi = GMi
.

The average number of edges in Gi’s is tn. If for some i, we had e(Gi) > tn, then, by
Fact 1 there would be a matching of size t + 1 in Gi, and hence, a matching of that
size in H, a contradiction. Thus, for all i we have e(Gi) = tn and Gi does not have a
matching of size t + 1. By the induction assumption for k′ = 2, there is a vertex cover
Ci in Gi of size t such that either Ci ⊂ Mi or Ci ⊂ Vk.

Since every matching M in K(V1, . . . , Vk−1) belongs to a factorization of K(V1, . . . , Vk−1),
the above properties of Gi hold also for GM . That is, for any matching M in K(V1, . . . , Vk−1)
there is a vertex cover CM in GM of size t such that either CM ⊂ M (type I) or CM ⊂ Vk

(type II). Moreover, for any edge e of K(V1, . . . , Vk−1), the neighborhood NGM
(e) is the
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same for all M 3 e. Thus, if two matchings M ′,M ′′ share an edge then they are of the
same type (I or II). Moreover, if they are both of type II then CM ′ = CM ′′ .

We first show that either for all i the matchings Mi are for type I or for all i they
are of type II. Indeed, fix j 6= i and let e ∈ Mi and e′ ∈ Mj. Since n ≥ 3 there exists
e0 ∈ K(V1, . . . , Vk−1) such that e0∩(e∪e′) = ∅. Let M be a matching in K(V1, . . . , Vk−1)
containing e and e0, and let M ′ be a matching in K(V1, . . . , Vk−1) containing e′ and e0.
Then, by transitivity, Mi and Mj are of the same type.

If all Mi are of type II then the sets Ci are the same set C ⊂ Vk which, therefore, is
a minimal vertex cover of H.

Finally, consider the case when for all i, Ci ⊂ Mi. Set H ′ =
⋃nk−2

i=1 Ci and notice that
H ′ has tnk−2 edges, it is completely connected with Vk in H and thus, the link of H in
V1 ∪∪ · · · ∪ Vk−1 is precisely H ′. If H ′ had a matching of size t + 1 that matching could
be extended to a matching of size t + 1 in H, again, a contradiction. Thus, there is no
matching of size k + 1 in H ′ and H ′ has tnk−2 edges. By the induction assumption for
k′ = k − 1, we conclude that H ′ has a vertex cover of size t, which by the construction
of H ′ is a vertex cover of the entire hypergraph H.

In view of Theorem 3, it is perhaps interesting to ask how many edges still guarantee
that the König property holds. For t = n− 1 we may ask a weaker question: how many
edges guarantee the presence of an isolated vertex, or more generally, a given minimum
degree.

For 3-partite 3-uniform hypergraphs without perfect matchings (that is, for t =
n−1), we undertook a more detailed study of the relation between the minimum degree
and the maximum number of edges. We used integer programming. A linear program
was created with one binary variable for each edge of the complete 3-partite 3-uniform
hypergraph with n vertices in each class. For each perfect matching an inequality was
created, stating that at least one edge of the matching must be missing. At the same
time, one inequality for each vertex was created, stating that the number of edges at
that vertex must be at least δ. Observe that this only gives a lower bound on the actual
δ of the hypergraph. Finally the objective was chosen to be maximum number of edges,
i.e. the maximum number of variables set to 1.

For n = 3 and n = 4 the resulting integer program is quite small and can easily
be solved by a standard integer programming solver (we used GNU’s glpk and verified
the results using a commercial solver). The maximum number of edges for each case
is shown in Table 2. In particular, and most importantly for us, the smallest number
of edges in a 4 × 4 × 4 3-partite 3-graph without a perfect matching which forces the
presence of an isolated vertex is 43.

3 The proof of Theorem 2

For two hypergraphs F and Q, let N(F,Q) be the number of copies of Q in F . We will
need the following lemma proved, in a slightly different form, by Erdős in [6]. Here we
present a version from [18].
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δ\n 3 4
0 18 48
1 16 42
2 16 42
3 15 42
4 14 40
5 - 37
6 37
7 37
8 32
9 -

Table 1: The maximum number of edges in a 3-uniform 3-partite hypergraph without a
perfect matching, having n vertices in each class and given lower bound on the minimum
degree δ.

Lemma 1. For every integer r ≥ 2, every d > 0, and every r-uniform, r-partite hyper-
graph Q, there exist c > 0 and n0 such that for every r-uniform hypergraph F on n ≥ n0

vertices with eF ≥ dnr, we have N(F, Q) ≥ cnvQ.

As a consequence of the absorption lemma proved in [8] (Theorem 10), in order
to prove our Theorem 2 it is sufficient to show a seemingly weaker statement. It is
analogous to Theorem 16 in [8].

Lemma 2. For all integers k and l, where 0 < 2l < k, and all γ > 0, there is n0 such
that if H is a k-uniform hypergraph on n > n0 vertices with

δl(H) ≥
(

k − l

k
− 1

kk−l
+ γ

)(
n− l

k − l

)
,

then H contains a matching covering more than n−√n vertices.

We wrote above n − √n but, in fact, we could have any sufficiently large constant
instead of

√
n. On the other hand, to deduce Theorem 2, even γ′n uncovered vertices for

a small constant γ′ would be tolerable (as was the case in [8]). Once we prove Lemma
2, it will be quite straightforward to deduce Theorem 2. Just take γ small enough
with respect to ε and apply Corollary 13 from [8] (as a guideline, see the short proof of
Theorem 6 in [8]). Hence, it remains to prove Lemma 2.

Proof of Lemma 2: Let M be a largest matching in H. Assume to the contrary
that n − |V (M)| ≥ √

n. Let X = V (H) \ V (M). Without loss of generality we may
suppose that x := |X| =

√
n (we omit floors and ceilings for clarity of presentation).

Set m = |M |.
For every l-element subset S ⊆ X and any submatching M ′ of M , denote by LS(M ′)

the (k−l)-uniform link hypergraph of S, consisting of all (k−l)-element sets T ⊆ V (M ′)
such that S∪T ∈ H and |T∩e| ≤ 1 for every edge e ∈ M ′. Given S, and taking M ′ = M ,
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the number of edges of H of the form S∪T and such that T 6∈ LS(M), is o(nk−l). Hence,
by the assumption on δl(H), for every S ∈ (

X
l

)
,

|LS(M)| = degH(S)− o(nk−l) ≥
(

k − l

k
− 1

kk−l
+ γ − o(1)

) (
n− l

k − l

)
. (2)

To complete the proof, we will find a set S which violates the above inequality.
For every S ∈ (

X
l

)
, we break the family

(
M
k−l

)
consisting of the sets E = {e1, . . . , ek−l},

where ei ∈ M , into three parts, according to the properties of the link LS(E). Namely,
we write (

M

k − l

)
= P (S) ∪ A(S) ∪B(S),

where

• P (S) =
{
E ∈ (

M
k−l

)
: LS(E) has a matching of size k − l + 1

}

• A(S) =
{
E ∈ (

M
k−l

)
: |LS(E)| ≤ (k − l)kk−l−1 − 1

}

• B(S) =
{
E ∈ (

M
k−l

) \ P (S) : |LS(E)| = (k − l)kk−l−1
}

The number (k− l)kk−l−1 is not magic. By Fact 1 with n := k, k := k− l and t := k− l,
this is the maximum number of edges in a (k − l)-uniform, (k − l)-partite hypergraph
with k vertices in each partition class and without a matching of size k−l+1. Moreover,
by Theorem 3, the only hypergraph which achieves this maximum is one with exactly
l isolated vertices, all belonging to the same partition class, that is, Kk−l. We set
K := Kk−l. Thus, K is isomorphic to Kk−l,k,...,k ∪ I, where Kk−l,k,...,k is the complete,
(k − l)-partite (k − l)–uniform hypergraph and I is a set of l isolated vertices, disjoint
from V (Kk−l,k,...,k). It follows that for every E ∈ B(S), LS(E) is a copy of K.

Our ultimate goal is to find a set S ∈ (
X
l

)
with

max(|P (S)|, |B(S)|) ≤ γ

3

(
m

k − l

)
. (3)

Indeed, then

|LS(M)| ≤ kk−l(|P (S)|+ |B(S)|) +
(
(k − l)kk−l−1 − 1

) |A(S)|

≤
(

2γ

3
kk−l + (k − l)kk−l−1 − 1

)(
m

k − l

)
,

(4)

which, after using the obvious bound m ≤ n/k yields a contradiction with (2).
We first show that for most S ∈ (

X
l

)
we do have |P (S)| ≤ 1

3
γ
(

m
k−l

)
. This is the easier

of the two remaining tasks, but at the same time very instructive for the other, more
involved case.

Fact 2. For at most γ
(

x
l

)
sets S ∈ (

X
l

)
we have |P (S)| > 1

3
γ
(

m
k−l

)
.
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Proof. Suppose that at least γ
(

x
l

)
sets S ∈ (

X
l

)
satisfy |P (S)| > 1

3
γ
(

m
k−l

)
. Then, by

averaging, there exists E0 ∈
(

M
k−l

)
such that E0 ∈ P (S) for at least 1

3
γ2

(
x
l

)
sets S ∈ (

X
l

)
.

Since there are only O(1) different labelled (k − l)-uniform hypergraphs on k(k − l)
vertices, there exists a particular hypergraph L0 on the vertex set

⋃
e∈E e and, for some

c = c(γ, k) > 0, at least c
(

x
l

)
sets S ∈ (

X
l

)
such that LS(E0) = L0. Since x =

√
n,

one can choose from among these sets k − l + 1 disjoints sets S1, . . . , Sk−l+1. (We could
choose more, but this is what we need.)

Since E0 ∈ P (Si) and LSi
(E0) = L0 for all i = 1, . . . , k − l + 1, there is a matching

M0 in L0 of size k − l + 1, say M0 = {T1, . . . , Tk−l+1}. But then the sets Si ∪ Ti,
i = 1, . . . , k − l + 1 form a matching in H of size k − l + 1 which intersects only k − l
edges of M (the edges in E). This is a contradiction with the maximality of M in H.

Fact 2 alone yields a weaker version of Lemma 2 without the term “− 1
kk−l ”, and thus,

together with the absorption lemma, it provides an alternative proof of Theorem 1. To
prove our result we need another, much more involved statement.

Fact 3. For at most γ
(

x
l

)
sets S ∈ (

X
l

)
we have |B(S)| > 1

3
γ
(

m
k−l

)
.

Proof. Suppose that at least γ
(

x
l

)
sets S ∈ (

X
l

)
satisfy |B(S)| > 1

3
γ
(

m
k−l

)
. Fix one such S.

Let Pk be a (k− l)-uniform hypergraph consisting of 2(k− l)+1 vertices e1, . . . , e2(k−l)+1

and four edges Ei = {ei, . . . , ei+k−l−1}, i ∈ {1, 2, k − l + 1, k − l + 2}. Let F consist of
k − l disjoint copies P1,P2, . . . ,Pk−l of Pk, whose midpoints, e1

k−l+1, e
2
k−l+1, . . . , e

k−l
k−l+1

form an edge E0 (see Fig. 1).
It is time to recall the Erdős counting lemma, Lemma 1, by which there are Θ(m6(k−l)+3)

copies of F in B(S).
By the same averaging argument as before, we conclude that there exists a copy F0

of F and, say, 3(k− l) + 1 disjoint sets S1, . . . , S3(k−l)+1 in
(

X
l

)
such that for every edge

E ∈ F0 and every q = 1, . . . , 3(k − l) + 1, we have LSq(E) = K(E), where K(E) is a
copy of the critical hypergraph K with the partition classes e ∈ E, one of which contains
the set I(E) of l isolated vertices. To get a contradiction with the maximality of M , we
have to find a matching M ′ in

⋃
E∈F0

K(E) of some size t ≤ 3(k − l) + 1 which touches
at most t− 1 edges of M . That matching, combined with the sets S1, . . . , St will yield
an enlargement of M .

To show the existence of the required matching, we consider a couple of cases with
respect to the location of the sets I(E).

Case 1. If for all j = 1, 2, 3, I(Ej
k−l+1) 6⊂ ej

k−l+1 then construct M ′ by taking any

edge T of KE0 plus three (k − l)-matchings M j ⊂ K(Ej
k−l+1), j = 1, 2, 3, disjoint from

T . Matching M ′ has 3(k − l) + 1 edges, but it intersects only 3(k − l) edges of M .
Case 2. There exists j ∈ {1, 2, 3} such that I(Ej

k−l+1) ⊂ ej
k−l+1. W.l.o.g., we assume

that j = 1 and suppress the superscript 1 thereafter. We also introduce shorthand
notation Ii = I(Ei) and Ki = K(Ei).

Subcase 2a. If I2 ⊂ ek−l+1 then take as M ′ a matching M1 of size k − l in K1 and
a matching Mk−l+2 of size k − l in Kk−l+2, and supplement them by two disjoint edges,
T ′ ∈ Kk−l+1 and T ′′ ∈ K2. Since |I2 ∩ Ik−l+1| ≤ l ≤ k − 2, the choice of T ′ nd T ′′ is
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Figure 1: The hypergraph F for k − l = 3

always possible. Thus, the obtained matching M ′ has size 2(k− l) + 2, but it intersects
only 2(k − l) + 1 edges of M (see Fig. 2).

Subcase 2b. If I2 6⊂ ej
k−l+1 then take as M ′ a matching M2 of size k− l in K2 and a

matching Mk−l+2 of size k− l in Kk−l+2, and supplement them by an edge, T ∈ Kk−l+1.
The obtained matching M ′ has size 2(k− l)+1, but it intersects only 2(k− l) edges of M
(see Fig. 3). So, we could enlarge M obtaining a contradiction with its maximality.

As a consequence of Facts 2 and 3, the number of sets S ∈ (
X
l

)
violating (3) is

smaller than 2γ
(

x
l

)
, and so, there is a set S not satisfying (2). This concludes the proof

of Lemma 2.

Remark 1. In order to close the gap between the conjectured threshold (1) and the
bound we proved in this paper, whenever 1 − (1 − 1

k
)k−l ≥ 1

2
, one should try to find

a (k − l)-partite, (k − l)-uniform hypergraph F with the following property: for any
replacement of its edges E with copies of (possibly different) (k − l)-partite, (k − l)-
uniform hypergraphs QE such that, for each i, QE has

• k vertices in each partition class,

• more than kk−1 − (k − 1)k−l edges, and

• no matching of size k − l + 1,
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Figure 2: Illustration to Subcase 2a

the resulting hypergraph contains a matching of some size t which stretches over less
than t partition classes. Then, the method applied in this paper would work. This is
a finite problem and could, in principle, be solved by a computer search. However, the
complexity for such an approach grows prohibitively fast with k.

4 Further improvement for k = 4, l = 1

As an encouragement toward the approach described in Remark 1, for k = 4 and l = 1
we show here how one can improve the coefficient 47

64
in the bound from Theorem 2.

We believe that with a similar but significantly bigger effort one can get down to the
conjectured 37/64.

Theorem 4. For all ε > 0, there is n0 such that if H is a 4-uniform hypergraph on
n > n0 vertices, n divisible by 4, with

δ1(H) ≥
(

42

64
+ ε

)(
n− 1

3

)
,

then H contains a perfect matching.
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Proof. The proof follows the lines and notation of the proof of Theorem 2, but we
analyze the structure of LS(E) with more care. Since now |S| = 1, in our notation, we
will identify S with its element s. In order to prove an analog of Lemma 2, for every
s ∈ X we now partition the family of triples of the edges of M as follows. We write

(
M

3

)
= P (s) ∪ A(s) ∪B(s),

where

• P (s) =
{
E ∈ (

M
3

)
: Ls(E) has a perfect matching (of size 4)

}

• A(s) =
{
E ∈ (

M
3

)
: |Ls(E)| ≤ 42

}

• B(s) =
{
E ∈ (

M
3

) \ A(s) : Ls(E)) has an isolated vertex
}

We checked by computer (cf. the Table in Section 2) that 3-partite 3-graphs L with
4 vertices in each class, at least 43 edges and without a perfect matching must have
δ(L) = 0. Hence, the above partition of

(
M
3

)
is complete. All we have to show is that

there exists a vertex s ∈ X with

max(|P (s)|, |B(s)|) ≤ γ

3

(
m

3

)
. (5)

We handle P (s) exactly as in Fact 2. For B(s) we look closer at the structure
of Ls(E). For a 3-partite 4 × 4 × 4 3-uniform hypergraph L with partition classes
V (L) = e ∪ f ∪ g, we call a vertex v ∈ V (L) free if there exists a 3-matching M in
L such that v 6∈ V (M); we call a pair of vertices v, w ∈ V (L) free if there exists a
3-matching M in L such that {v, w}∩V (M) = ∅. Note that if |L| ≥ 37 then L contains
at most one isolated vertex.

Fact 4. For every s ∈ X and every E ∈ B(s), if e ∈ E contains the isolate of Ls(E)
then all pairs of vertices v, w, where v ∈ f and w ∈ g, are free. In particular, every
v ∈ f ∪ g is free. Moreover, e contains at least two vertices of degrees at least 14.

Proof. Let u ∈ e, deg(u) = 0. Take any v ∈ f and w ∈ g. The total number of
edges containing at least one of these two vertices, but not containing u is at most
48 − 27 = 21. Thus, Ls(E) − {u, v, w} is a 3-partite 3 × 3 × 3 3-uniform hypergraph
with at least 43 − 21 = 22 ≥ 19 edges, and so, by Fact 1, it has a perfect matching,
implying that the pair v, w is free in Ls(E). The sum of degrees of the three vertices of
e \ {u} equals at least 43, so the second statement follows.

It remains to prove the following lemma.

Fact 5. For at most γx vertices s ∈ X we have |B(s)| > 1
3
γ
(

m
3

)
.

Proof. Suppose that at least γx vertices s ∈ X satisfy |B(s)| > 1
3
γ
(

m
3

)
. Fix one such s.

Let F consist of 3 disjoint copies P1,P2,P3 of the path P4 described in the proof of

11



Theorem 2, whose midpoints are connected by an edge E0 (see Fig. 1). By Lemma 1,
there are Θ(m21) copies of F in C(s).

By averaging, there exist 10 vertices s1, . . . , s10 and a copy F0 of F such that for every
edge E of F0 we have E ∈ B(sj), and the 4×4×4 3-uniform hypergraphs L(E) := Lsj

(E)
are the same for all j. Let us denote the edges forming F0 by E1

i , E
2
i , E

3
i , i = 1, 2, 4, 5,

and E0, where the superscript indicates which path they belong to. The vertices of
these paths are denoted, correspondingly, by e1

i , e
2
i , e

3
i . Thus, E0 = {e1

4, e
2
4, e

3
4}. For

each E ∈ F0 let i(E) be the isolated vertex in L(E). To get a contradiction with the
maximality of M , we have to find a matching M ′ in

⋃
E∈F0

L(E) of some size t ≤ 10
which touches at most t− 1 edges of M .

Case 1. If for all j = 1, 2, 3, i(Ej
4) 6∈ ej

4 then construct M ′ by taking any edge
T0 of L(E0) plus three (k − l)-matchings M j ⊂ L(Ej

4), j = 1, 2, 3, disjoint from T0.
Since by Fact 4 T0 ∩ ej

4 is free in L(Ej
4), the existence of M j follows, j = 1, 2, 3. Then

M ′ = M1∪M2∪M3∪{T0} is a 10-matching T0, T1, . . . , T9 in
⋃3

j=1 L(Ej
4)∪L(E0) which

intersects only 9 edges of M .
Case 2. There exists j ∈ {1, 2, 3} such that i(Ej

4) ∈ ej
4. W.l.o.g., we assume that

j = 1 and suppress the superscript 1 thereafter. We will use a shorthand notation
Li := L(Ei). Consider two subcases with respect to i(E2).

Subcase 2a: i(E2) ∈ e4. Let i(E4) = u ∈ e4 and i(E2) = x ∈ e4, x and u possibly
equal. Let x1 6= u1 be two vertices of e4 such that degL2(x1) ≥ 14 and degL2(u1) ≥ 14.
Since e5 and e6 could be swapped around, w.l.o.g., we may assume that i(E5) 6∈ e5.
There is a vertex v1 ∈ e5 such that {u1, v1, w1} ∈ L4 for all w ∈ e6. Let M5 be a
3-matching in L5 which avoids v1; it also avoids a vertex w1 ∈ e6. Similarly, there exists
a 3-matching M1 in L1 and an edge T ′′ = {x1, y1, z1} ∈ L2 disjoint from M1. Hence,
altogether, M1 ∪M5 ∪ {T ′, T ′′} is an 8-matching in L1 ∪ L2 ∪ L4 ∪ L5 intersecting only
7 edges of M .

Subcase 2b: i(E2) ∈ e2 ∪ e3. Let M5 and T ′ be as in Subcase 2a, and let M2 be a
3-matching in L2 which avoids u1. Then M2∪M5∪{T ′} is a 7-matching in L2∪L4∪L5

intersecting only 6 edges of M .
This completes the proof of Theorem 4.

5 The proof of Proposition 1

Our proof is based on known constructions. Observe that for a Hamilton r-cycle C we
have |C| = n

k−r
, and, assuming that k − r|n, all vertex degrees in C are equal k

k−r
. We

consider three cases.
Case 1: k

k−r
is odd.

Let H1 = (V, E) where V = A ∪ B, 1
2
n − 1 ≤ |A| ≤ 1

2
n, |A| is odd, and E consists

of all e ∈ (
V
k

)
such that |e∩ V | is even. Note that δk−1(H1) ≥ 1

2
n− k. Suppose that H1

contains a Hamilton r-cycle C. Then, by double counting,

∑
e∈C

|e ∩ A| =
∑
v∈A

degC(v) = |A| k

k − r
. (6)

12



This is a contradiction, because the L-H-S is even, while the R-H-S is odd.
Case 2: k

k−r
is even and n

k−r
is odd.

Let H2 = (V,E) where V = A ∪ B, |A| = d1
2
e, and E consists of all e ∈ (

V
k

)
such that |e ∩ V | is odd. Note that δk−1(H2) ≥ 1

2
n − k. Suppose that H2 contains a

Hamilton r-cycle C. But then the L-H-S of (6) is odd, while the R-H-S is even, again,
a contradiction.

Case 3: Both, k
k−r

and n
k−r

are even. Let s ≥ 2 be the greatest common divisor of
k

k−r
and n

k−r
(in fact, the highest common power of two would do). Set rs = k−s(k−r) =

r − (s − 1)(k − r) and note that every Hamilton r-cycle in H contains a Hamilton rs-
cycle in H, and consequently, hrs(n, k) ≤ hr(k, n) (recall that for rs = 0 this is a perfect
matching). Finally, observe that the greatest common divisor of k

k−rs
and n

k−rs
equals

one, and so, we are back in either Case 1 or Case 2 for rs. Thus, either H1 or H2 shows
that hrs(n, k) ≥ 1

2
n− k, completing the proof.
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