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Abstract. This paper concerns the coefficients of the chromatic polynomial
of a graph. We first report on a computational verification of the strict log-
concavity conjecture for chromatic polynomials for all graphs on at most 11
vertices, as well as for certain cubic graphs.
In the second part of the paper we give a number of conjectures and the-

orems regarding the behaviour of the coefficients of the chromatic polynomial,
in part motivated by our computations. Here our focus is on ε(G), the average
size of a broken circuit free subgraph of the graph G, whose behaviour under
edge deletion and contraction i studied.

1. Log-concavity4

In a paper from 1912, [Bir12], aimed at proving the four-colour theorem, G. D. Birk-5

hoff introduced a function P (G, x), defined for all positive integers x to be the6

number of proper x-colourings of the graph G. As it turns out P (G, x) is a poly-7

nomial in x and so is defined for all real and complex values of x as well. P (G, x)8

is of course the by now well known chromatic polynomial and although Birkhoff’s9

original hope that it would help resolve the four colour conjecture did not bear fruit10

it has attracted a steady stream of attention through the years.11

Most of the investigations regarding the chromatic polynomial have focused on12

the location of its zeros. An early example is the work of Tutte on the chro-13

matic roots of triangulations and the so called golden identity, nicely described in14

[Tut98]. More recently we have the results of Thomassen on zero-free intervals of15

minor closed graph families [Tho97] and the influence of hamiltonian paths on the16

zeros of the chromatic polynomial [Tho00]. There has also been a recent influx of17

ideas from statistical physics due to the connection to the Potts model. Using this18

connection Sokal [Sok01] has shown that the moduli of the zeros are bounded by a19

function linear in the maximum degree of the graph. Another recent development20

is the results of Biggs [Big02] accumulation points for the zeros of sets of chro-21

matic polynomials. For recent surveys of results and conjectures about the zeros of22

chromatic polynomials see [Jac02] and [Sok05].23

Another line of work has focused on the coefficients of the chromatic polynomial.
For a graph G on n vertices we can express P (G, x) as

P (G, x) =
n
∑

i=0

(−1)n−iaix
i,

where ai are nonnegative integers. There is a number of results giving bounds on24

the coefficients, for a good survey see [RT88]. In 1968 Read [Rea68] made the25

following conjecture.26
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Conjecture 1.1 (The Unimodality Conjecture).
For any chromatic polynomial the following statement is false for all j,

aj−1 > aj and aj < aj+1.

This basically means that at first the coefficients are increasing with j and then,27

possibly, decreasing. A polynomial with this property is said to have unimodal28

coefficients. The conjecture was later given a stronger form by Hoggar [Hog74] who29

conjectured,30

Conjecture 1.2 (The Strict Log-Concavity Conjecture).
For any chromatic polynomial and any j,

aj−1aj+1 < a
2
j .

A polynomial satisfying this inequality is said to be strictly logarithmically con-31

cave, or strictly log-concave for short. Log-concavity is a stronger property than32

unimodality in the sense that it implies unimodality as well. Log-concavity is also33

preserved under multiplication of polynomials which ties in nicely with the fact that34

the chromatic polynomial of a disconnected graph is the product of the chromatic35

polynomials of its components.36

To our knowledge there have been basically no progress on either of these two37

conjectures since they were first stated. The corresponding conjectures for other38

ways of writing the chromatic polynomials, surveyed in [Bre92], have been shown39

not to be strictly log-concave, see references in [RT88]. Conjectures 1.1 and 1.240

were verified for all graphs on at most 9 vertices during the 1980’s [RT88] and now41

we can report the following computational result:42

Fact 1.3.43

Conjecture 1.2 holds for all graphs on n ≤ 11 vertices. Conjecture 1.2 also holds44

for all graphs on 12 vertices which have less than 20, or more than 45, edges.45

Using some simple properties of the chromatic polynomial [RT88] one can see46

that the conjecture holds for all graphs if it holds for 2-connected graphs. We47

used Brendan McKay’s graph generator geng [McK] to generate all 2-connected48

graphs on at most 12 vertices and the number of edges stated, then we used a49

simple Fortran 90 implementation of the basic deletion-contraction algorithm to50

compute the chromatic polynomials and test them for log-concavity. To give a51

feeling for the size of this undertaking note that there are 900969091 2-connected52

graphs on 11 vertices. The polynomials were computed and tested for concavity as53

the graphs were generated, so no graphs or polynomials were saved on disc. The54

computation was done on 48 SUN workstations, each working for 8 months. The55

computation of the chromatic polynomials could certainly have been done faster by56

using a more advanced algorithm but the increased complexity of the code would57

also have meant a larger risk of programming errors. A more advanced program58

could probably manage the 12 vertex graphs with current computers as well.59

We also made a smaller test on cubic graphs:60

Fact 1.4.61

Conjecture 1.2 holds for all cubic graphs on n ≤ 20 vertices. Conjecture 1.2 also62

holds for all cubic graphs on 22 vertices which have girth at least 5, 24 vertices and63

girth at least 6, and 26, 28 or 30 vertices with girth at least 7.64

Here we used a version of the program which deleted edges until a spanning tree65

was reached, thereby making it faster for sparse graphs. This computation was66
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done on a linux cluster with 2.8GHz pentium4 processors. Each 30 vertex graph67

used about 23 CPU hours. The high girth graphs are of special interest since Read68

and Royle among them found counterexamples to the conjecture that chromatic69

polynomials have only roots with non-negative real parts, see e.g [RR91].70

One of the main problem when trying to test Conjectures 1.1 and 1.2 is the fact71

that chromatic polynomials are notoriously hard to compute, it is one of the classical72

#P-complete problems. There are a small number of graph classes for which explicit73

expressions for the chromatic polynomial is known, and the conjectures are known74

to hold, e.g. trees, cycles, wheels, see [RT88] for a few more examples. One further75

class, considered by Read, should be mentioned. A graph is called a broken wheel if76

it can be constructed by deleting a subset of the radial edges in a wheel. In [Rea86]77

Read proved that broken wheels satisfy Conjecture 1.2. Apart from where explicit78

expressions are known there are few large graphs for which chromatic polynomials79

are known and these two conjectures have been verified.80

One class of large graphs can be obtained using the transfer matrix methods81

developed by Biggs, starting with [Big01]. Using this method the chromatic poly-82

nomials of what Biggs calls bracelets can be computed. For large graphs in this83

class the chromatic polynomials can be written as a short sum of high powers84

of small polynomials. Since powers of polynomials tend to make the coefficients85

more and more log-concave this class seems unlikely to produce counterexamples86

to Conjecture 1.2.87

There has been isolated large graphs for which the chromatic polynomial has been88

computed by using symmetries to reduce the number of graphs in the recursions.89

Here Haggard stands out, especially [HM99] with the computation of the chromatic90

polynomial of the truncated icosahedron, or bucky-ball, with 60 vertices. The fact91

that the graph was both very sparse and had a large automorphism group was92

essential. For graphs of even moderate density we know of no example of comparable93

size. A good computational challenge, even with the use of symmetries, would be:94

Problem 1.5.95

Compute the chromatic polynomial of a regular self-complementary graph on 4096

vertices.97

There is one more class in which the chromatic polynomials can be computed98

easily. Given graphs G0, G1, G2 we say that G0 is a k-clique sum of G1 and G2 if99

G0 can be constructed by identifying the vertices of a clique of size k in G1 with a100

clique of size k in G2. Note that there are many ways of forming a k-clique sum of101

two graphs. One classical class of graphs which can be constructed as clique sums102

ar the chordal graphs, i.e. the graphs in which any cycle of length greater than 3103

has a chord. By a theorem of Dirac [Dir61] these graphs can be built by repeatedly104

taking the clique sum of a smaller chordal graph and a complete graph. Another105

well known graph class constructed this way is the outerplanar graphs, i.e. planar106

graph which can be drawn such that the outer face is a hamiltonian cycle. The107

outerplanar graphs can be constructed by repeatedly taking 2-clique sums of cycles.108

Given a graph G which is a k-clique sum of G1 and G2 we can, see [RT88], express109

the chromatic polynomial as110

P (G, x) =
P (G1, x)P (G2, x)

P (Kk, x)
. (1.1)111
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Thus for graphs which can be constructed by repeated clique sums we can compute112

the chromatic polynomial quite easily, in fact in polynomial time. This has already113

been observed for chordal graphs [RT88], for which it also follows that the chromatic114

polynomials have only positive integer roots.115

What can we say about Conjecture 1.2 for graphs of this last kind? Let us say
that the chromatic polynomial P (G, x) of a graph G has a good factoring if it can
be written as

P (G, x) = P (Kω, x)Q(G, x),

where ω is the clique number of G and Q(G, x) is a polynomial with strictly log-116

concave coefficients. We now have the following easy lemma117

Lemma 1.6. If both G1 and G2 in Formula 1.1 have chromatic polynomials with118

log-concave coefficients and at least one of them have a good factoring then P (G, x)119

has strictly log-concave coefficients.120

This follows immediately from the fact, see e.g. [Kar68], that products preserve121

log-concavity. From the formulae for the chromatic polynomials of trees, cycles122

and complete graphs it is easy to see that they all have good factorings. A more123

surprising fact is the following, which we have found by direct computation using124

Mathematica,125

Fact 1.7.126

The chromatic polynomials of all graphs on n ≤ 9 vertices have good factorings.127

Thus Conjecture 1.2 holds for all graphs which can be built by repeated clique sums128

using complete graphs, cycles, trees, and graphs with at most 9 vertices. Since the129

property of having a good factoring is stronger than being strictly log-concave it is130

natural to ask131

Problem 1.8.132

Do all chromatic polynomials have a good factoring?133

The chromatic polynomial has a generalisation to matroids as well, the so called134

characteristic polynomial of a matroid, see e.g. [Oxl92]. For this polynomial ana-135

logues of Conjecture 1.1 and Conjecture 1.2 have been posed to hold for all matroids.136

The conjectures have been shown to hold for some classes of matroids, but none of137

these include the graphic matroids which would imply Conjecture 1.2. For a survey138

of these matroid connections see [Aig87].139

2. Subgraphs without broken cycles140

There are several different expansions for the chromatic polynomial of a graph in141

terms of its subgraphs, see [Big93]. In 1932 Whitney [Whi32] gave the following142

characterisation. Assume that the edges of a graph G have been labelled with the143

integers 1,. . . ,m, where m = |E(G)|, in an arbitrary way. A path obtained from a144

cycle in G by removing the edge with the greatest label, among those in the cycle,145

is called a broken cycle.146

Theorem 2.1 ([Whi32]).147

The coefficient ai equals the number of subgraphs of G, with n− i edges, which do148

not contain a broken cycle.149

Here a subgraph is specified by its edge set. Note that the theorem implies that the150

number of broken cycle-free subgraphs is independent of the labelling of the graph.151

So in light of Whitney’s theorem and the deletion-contraction formulae for the152
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chromatic polynomial we see that Conjecture 1.2 really concerns how the number153

of broken circuit free subgraphs change under edge deletion and contraction.154

We say that two sequences ai and bi are co-concave if ai + bi is a log-concave155

sequence. Due to the deletion-contraction formulae for the chromatic polynomial,156

co-concavity is a key property for understanding the structure behind the log-157

concavity conjecture. If the two chromatic polynomials in the formulae could be158

shown to be co-concave Conjecture 1.2 would follow. Here we would like to state159

the following conjecture.160

Conjecture 2.2. Let bi be defined as before for a connected graph G of order n161

and let pi be the probabilities of the binomial distribution on n − 1 events with162

expectation ε (G). Then bi and pi are co-concave.163

We have verified the conjecture for all graphs on at most 9 vertices.164

A subgraph which does not contain a broken cycle obviously can not contain165

a cycle, and so must be a forest. This also implies that a0 = 0 and an = 1. So166

apart from the alternating sign the chromatic polynomial is the generating function167

for the broken cycle free subgraphs of G. In connection with our test of the log-168

concavity conjecture we also made some further investigations into the behaviour of169

the coefficients of chromatic polynomials for small graphs and we will now discuss170

some of them and state a few observations and problems for future work.171

First let us define

bi =
an−i
∑

j aj
, i = 0, . . . , n− 1.

The number bi can be interpreted as the probability that a uniformly chosen broken172

cycle free subgraph has size i. Given a graph G we can now calculate the mean173

size of a broken cycle free subgraph of G, let us denote this size ε (G), that is174

ε (G) =
∑

i i bi. Let us look at two simple examples.175

Example 2.3. The chromatic polynomial of a tree T on n vertices is just x(x −176

1)n−1 and so the bi’s will equal the probabilities of the binomial distribution for177

n− 1 events with p = 1
2 and mean

n−1
2 .178

The chromatic polynomial of Kn is
∏n−1
i=0 (x − i). Here we find that bi =

[ni ]
n! ,179

where
[

n
j

]

are the Stirling numbers of the first kind. The mean size of a broken180

circuit free subgraph here is n −
∑n−1
i=1 i

−1, and the bi’s converge to a Poisson181

distribution with mean ε(Kn) [MW58].182

In Figure 1 we have plotted ε (G) for all connected graphs on 8 vertices. At the183

bottom left we find all the trees on 8 vertices, all at the same point, and at the184

top right we find K8. From our test on small graphs we would like to pose a few185

problems and conjectures on the behaviour of ε (G).186

Conjecture 2.4. Let G be a connected graph on n vertices, which is not complete
or a tree. Then

ε (Pn) < ε (G) < ε (Kn) ,

where Pn is the path on n vertices.187

Of course Pn could be replaced by any tree on n vertices.188

Problem 2.5. Given n and k what is the maximum and minimum of ε (G) among189

all connected graphs with n vertices and k edges?190

In Figure 2 we have plotted the mean value of ε (G) among the connected graphs191

on 10 vertices and k edges as a function of k, let us denote the corresponding mean192
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Figure 1. ε (G) plotted for all connected graphs on 8 vertices.
The horizontal coordinate show the number of edges in the graphs.
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Figure 2. ε (10, k)

for a general n by ε (n, k). We immediately know the values of ε (n, n− 1) and193

ε
(

n,
(

n
2

))

(see Example 2.3), and for a few k very close to these two values it can194

be calculated as well.195

Problem 2.6. What is the asymptotic behaviour of ε (n, k) for large n?196

3. Some results on the behaviour of ε (G)197

Apart from their inherent value the interest in the problems and conjectures of
the previous section really stem from the concept of co-concavity. The chromatic
polynomial of a graph can be expressed in terms of chromatic polynomials of smaller
graphs using the deletion-contraction formula,

P (G, x) = P (G− e, x)− P (G/e, x) ,
6



where G− e denotes the graph obtained by removing the edge e from G and G/e198

the graph obtained by contracting e. So if the coefficients of P (G− e, x) and199

−P (G/e, x) could be shown to be co-concave the log-concavity conjecture would200

follow.201

As a first step in this direction we would like to find out more about how both202

the sum of the ai’s and ε (G) changes when we form subgraphs in the above way.203

If these quantities were not well-behaved that would clearly reduce the chance of204

the involved polynomials to have co-concave coefficients. However, as we shall see205

there seems to be some nice structure to their behaviour.206

Let us first note that207

ε (G) = n+
P ′ (G,−1)

P (G,−1)
. (3.1)208

This makes the following definitions convenient

η(G) = |P (G,−1)|

η′(G) = |P ′ (G,−1)|

As noted by Stanley [Sta73] η(G) can also be interpreted as the number of acyclic209

orientations of the graph.210

Let ne denote the number of broken cycle free subgraphs of G containing the211

edge e, let n′e denote the number of broken cycle free subgraphs of G not containing212

the edge e, and let n′′e be the number of broken cycle free subgraphs H of G − e213

such that H considered as a subgraph of G contains a broken cycle.214

We now observe that215

Proposition 3.1. Let G be a labelled connected graph on n vertices and e be the216

edge with the highest label in G.217

(1) ne = n
′

e.218

(2) η (G) = ne + n
′

e = 2ne = η (G− e) + η (G/e) .219

(3) η (G) > η (G− e) .220

(4) η (G− e) = η (G)− ne + n
′′

e =
1
2η(G) + n

′′

e = ne + n
′′

e .221

(5) η (G/e) = 1
2η(G)− n

′′

e = ne − n
′′

e .222

(6) 2n−2 ≤ ne, and the bound is sharp if G is a tree.223

Proof.224

(1) Let us assume that the edges in G have been labelled and that e is the edge225

with the highest label. Now n′e ≥ ne since from each graph counted by ne226

we can obtain a unique graph counted by n′e by removing e. We also find227

that ne ≥ n
′

e since if H is counted by n
′

e and H ∪ e contains a broken cycle228

then either H contained a broken cycle or H ∪ e contains a broken cycle229

where the missing edge has a higher label than e, in both cases we have a230

contradiction.231

(2) The first equality follows directly from the definition of η(G), the second
equality follows from (1), and the last equality from the deletion-contraction
formula together with Equation 3.1,

η(G) = |P (G,−1)| = |P (G− e,−1)− P (G/e,−1)| = η(G− e) + η(G/e)

The last equality holds thanks to the minus sign in the deletion-contraction232

formula, which makes sure that the two terms have the same sign.233

(3) Follows from (2).234
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(4) Let H be a subgraph counted by ne, then both H and H−e will be a broken235

cycle free subgraph of G. However, none of the graphs counted by ne are236

subgraphs of G−e and so should be subtracted when we count broken cycle237

free subgraphs of G− e. If H is a subgraph counted by n′′e then H will be238

a broken cycle free subgraph of G − e not counted by ne and n
′

e, and so239

should be added to the number of broken cycle free subgraphs of G − e.240

The rest follows from (1) and (2).241

(5) Follows from (4) and (2).242

(6) Every broken cycle free subgraph of G/e can be expanded into at least one243

subgraph of G counted by ne. By (2) we thus get that ne will be at least244

1
2η (T ) = 2

n−2, where T is a tree on n− 1 vertices.245

�246

Here we see that if we know how η (G− e) relates to η (G) we will also know247

what happens to η (G/e).248

Property (2) in the proposition is nice and together with similar reasoning for249

η′ (G) one might be tempted to make the following conjecture. Let G1 ≺ G2 mean250

that G1 can be obtained from G2 by deleting edges. Together with this partial251

order the set of graphs on n vertices forms a lattice G(n).252

False Conjecture 3.2. The function ε (G) is increasing on chains in the lattice253

G(n).254

However as the alert reader might already have suspected the conjecture is not true.255

Example 3.3. A counterexample can be constructed from K2,n, n ≥ 4 by adding256

an edge e with endpoints in the smaller part of the bipartition.257

Let G = K2,4 ∪ e, then

P (G, x) = −16x+ 48x2 − 56x3 + 32x4 − 9x5 + x6

P (K2,4, x) = −15x+ 44x
2 − 50x3 + 28x4 − 8x5 + x6.

giving us ε (G) = 13
6 = 2.166 . . . and ε (K2,4) =

319
146 = 2.18 . . .258

The critical property of the graphs in the example is that there exists one edge259

such that it is used by a very large number of short cycles and at the same time it260

is a chord of all the longer cycles in the graph.261

The rather weak Conjecture 2.4 is just a hint of what should be true. Experiment262

shows that most transitions in the lattice behave as the false conjecture claims. In263

fact every graph on at most 8 vertices contains many edges such that ε (G− e) <264

ε (G). Due to the counterexamples it is not clear what the right conjecture should265

be here. We can however prove the following266

Theorem 3.4. Let G be the union of two subgraphs G1 and G2 such that their
intersection is a Kk. Then

ε (G) = ε (G1) + ε (G2)− ε (Kk)

Proof. We first recall, see [RT88], that the chromatic polynomial of G can be ex-267

pressed as268

P (G, x) =
P (G1, x)P (G2, x)

P (Kk, x)
. (3.2)269
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If we now differentiate this and use the identity 3.1 we get,

ε (G) = n+
P ′(G1,−1)

P (G1,−1)
+
P ′(G2,−1)

P (G2,−1)
−
P ′(Kk,−1)

P (Kk,−1)
,

as claimed. �270

Corollary 3.5. If G is the union of two graphs G1 and G2 intersecting in at most
one vertex, then

ε (G) = ε (G1) + ε (G2) .

The corollary implies that ε (G) is determined by the blocks of G271

Corollary 3.6. If G has a cut-edge e and the two components of G− e are G1 and
G2 then

ε (G) = ε (G1) + ε (G2) +
1

2
.

Using Theorem 3.4 we can for example quickly compute ε(Kn − e).272

Example 3.7. Let e be any edge of Kn. Kn − e is the union of two Kn−1, the
intersection of which is a Kn−2. Using Theorem 3.4 and the value of ε(Kn) from
Example 2.3 we find that,

ε(Kn − e) = 2ε(Kn−1)− ε(Kn−2) = ε(Kn)−
1

n(n− 1)
.

In view of the two corollaries it makes sense to study Conjecture 2.4 on the subset273

Gc(n) of all connected graphs in G(n). The poset Gc(n) is not a lattice, since all274

trees are minimal elements, but all the minimal elements of Gc(n) give the same275

value of ε (G). So in order to prove Conjecture 2.4 one could try to prove that any276

graph in Gc(n) belongs to a chain in which the statement of the false conjecture277

holds. This in turn reduces to showing that any 2-connected graph contains an278

edge e such that ε (G− e) < ε (G), which we state as a conjecture.279

Conjecture 3.8. Every 2-connected graph G contains at least one edge e such that280

ε (G− e) < ε (G).281

We have verified this property for all graphs on at most 8 vertices.282

From Theorem 3.4 we can get the following positive, but somewhat narrow,283

result.284

Proposition 3.9. Let v be a vertex of G such that the neighbours of v induces a
Kk and let e be an edge incident with v. Then

ε(G− e) = ε(G)−
1

k(k − 1)

Proof. First split G into a Kk+1 containing v and a new graph G
′ = G − v, their

intersection is the neighbourhood of v which is a Kk. By Theorem 3.4 we have
that,

ε(G) = ε(Kk+1) + ε(G
′)− ε(Kk), and

ε(G− e) = ε(Kk+1 − e) + ε(G
′)− ε(Kk),

the difference of which, by Example 3.7, is − (k(k − 1))
−1
. �285

This implies that our graph family from Example 3.3, which did not fulfill the false286

conjecture, does satisfy Conjecture 3.8.287

We can also ask how much ε (G) can be changed by removing an edge.288
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Theorem 3.10.

ε (G− e) ≥ ε (G)−
1

2
.

Equality holds if e is a cut-edge.289

Proof. Let ne, n
′

e and n
′′

e be as before and recall that by Proposition 3.1 ne =
1
2η(G).290

We now find that ε (G− e) will be a linear combination pl1 + (1− p)l2, 0 ≤ p ≤ 1.291

Here l1 is the average size of a broken cycle free subgraph of G counted by n
′

e and292

l2 is the average size of the graphs counted by n
′′

e . The value of p depends on the293

relative sizes of n′e and n
′′

e and is 1 when n
′′

e = 0.294

By the same reasoning as in the proof of Proposition 3.1 we see that l1 = ε (G)−
1
2 ,295

since for every graph counted by ne there is a graph with one edge less contributing296

to the average and ne is
1
2η(G).297

Similarly we see that l2 will be at least as large as the average size of the graphs298

counted by ne, since each graph counted by n
′

e has been obtained by adding at299

least one edge to a graph counted by ne and then removing e.300

Thus we see that ε (G− e) ≥ ε (G) − 1
2 and equality will hold only if n

′

e = 0,301

which means that there are no cycles through e and so e is a cut edge.302

�303

In a typical situation one would expect both l1 and l2 to contribute to the average
and so make ε (G− e) stay much closer to ε (G). In fact if Conjecture 2.4 is true
the function ε(G) must increase by an amount of about n2 − log n along a maximal

chain, corresponding to
(

n
2

)

− (n− 1) edges. Thus giving us an average increase in
ε(G) of

n
2 − log n

(

n
2

)

− (n− 1)
= O(n−1).

Theorem 3.10 also tells us that for graphs taken uniformly at random from304

G(n,m) the value of ε(G) will be well concentrated.305

Theorem 3.11. Let X(n,m) be the random variable given by ε(G) when G is a
connected graph taken uniformly at random from G(n,m). Then

Pr (|X(n,m)− ε(n,m)| ≥ t) ≤ 2e
8t
2

T

where T = min(m− (n− 1),
(

n
2

)

−m)306

Proof. When m − (n − 1) ≤
(

n
2

)

− m the result follows from Azuma’s inequality307

together with Theorem 3.10 by considering the value of ε(G) on a graph constructed308

by adding m random edges to an empty graph. We only get a denominator of309

T = m− (n− 1) in the exponent since the first n− 1 edges can be taken to form a310

spanning tree in G, and thereby not giving any variation in ε.311

For the dense case we can instead consider the graph as constructed by removing312
(

n
2

)

−m random edges from Kn. �313

We thus find that the value of ε(G) should be well concentrated for sparse and very314

dense graphs, and possibly less so for graphs of intermediate densities. This agrees315

well with the observed behaviour in Figure 1.316
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4. Some heuristic bounds for Problem 2.6317

Problem 2.6 essentially boils down to finding the expectation of ε (G) when G is318

drawn from G(n,m), the set of all graphs on n vertices and m edges. We have not319

been able to solve this problem but we can say something about the expectation320

of ε (G) in G(n, p), the graphs on n vertices with edges drawn independently with321

probability p. Let us denote the two expectations mentioned by ε(n,m) and ε(n, p)322

Let P (p, x) denote the expectation of P (G, x) in G(n, p). Grimmett [Gri77] has
found the following generating function for P (p, x),

∞
∑

n=0

Pn (p, x)
tn

n!
= F (p, t)x

with

F (p, t) =
∞
∑

n=0

(1− p)(
n

2) t
n

n!
.

Now what we would like to calculate is

E

(

P ′ (G, x)

P (G, x)

)

which we have not been able to do, but from the generating function above we can
calculate

E (P ′ (G, x))

E (P (G, x))

for moderate values of n. Let us do so and at the same time say something about
why we believe it to be a good approximation of the proper expectation. Let us
introduce the following notation in order to simplify our writing,

η(p) = |P (p,−1) |

η′(p) = |P ′ (p,−1) |

If η(G) and η′(G) had been independent random variables we would have had that

E

(

η′(G)

η(G)

)

= E (η′(G))E

(

1

η(G)

)

.

Next we can make a Taylor expansion of the distribution of 1
η(G) around x =

1
η(p)

and we see that if η(p) is reasonably large and η(G) does not have too large variance
then

E

(

1

η(G)

)

∼
1

η(p)
.

So what can be said about η(p) and the variance of η(G)? There are general upper
and lower bounds for η(G) in terms of the degree sequence of the graph G which
come in handy,

∏

v∈V (G)

f(dv + 1) ≤ η(G) ≤
∏

v∈V (G)

(dv + 1),

where dv is the degree of the vertex v and f(x) = (x!)
1

x . The lower bound is from
[GKKS93] and the upper from [GYY80], further bounds can be found in [KS96].
Since the degree sequence of a graph from G(n, p) is quite well concentrated, see

11
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Figure 3. ε (10, k) together with η
′(10,p)
η(10,p) . Both axes have been

rescaled to run between 0 and 1.

[Bol01], η(G) will be slightly less than (pn)n and does not have too large variance1

and so our estimate for E
(

1
η(G)

)

will be quite good. Thus we should find that

E

(

η′(G)

η(G)

)

∼
E (η′(G))

E (η(G))
,

where the ∼ means that they are comparable for large n.323

All of this is valid under the assumption that η(G) and η′(G) are independent,324

which of course is false. However, unless η(G) and η′(G) are strongly anti-correlated325

the approximation should be reasonably good.326

In Figure 3 we have plotted the exact values for ε (10, k) together with η
′(10,p)
η(10,p) . As327

can be seen we have a good agreement for large values of p but for lower values the328

curves grow apart. This is not unexpected since the exact values use only connected329

graphs and for small p our approximation uses a large number of disconnected330

graphs, thus giving an overestimate for ε(n, p). However, for a fixed p > 0 we331

expect to get better and better agreement between the curves as n increases and332

the proportion of disconnected graphs diminishes. Here we can also note that for333

p = 1 our estimate is actually exact, η′(1) = ±(n−
∑n−1
i=1 i

−1), η(1) = ±1, and for334

p = 0 we also get the correct value ε(n, 0) = 0.335

In Figure 4 we have plotted our estimate for n = 10, 20, 30, 40, each estimate336

divided by its value at p = 1 in order to make them comparable.337

Following the reasoning behind Proposition 3.10 we can also strive for a lower
bound on ε (n, p). Given a broken cycle free subgraph of Kn the probability that
it is also a subgraph of a graph from G(n, p) is simply pi, where i is the number
of edges in the subgraph. Using the formula for P (Kn, x) we find that the average
generating function for these subgraphs is

Sn(p, x) =

n
∑

i=0

[

n

n− i

]

pixi = (px)n(pn)n−1,

1In fact one would expect η(p)/(pn)n to have a log-normal distribution.
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Figure 4.
η′(n,p)
η(n,p) for n = 10, 20, 30, 40 (n=10 is the lowest curve).

Both axes have been rescaled to run between 0 and 1.

where xn = x(x + 1) . . . (x + (n − 1)). The subgraphs counted by this generating
function are expected to be on the average smaller than those present in a graph
from G(n, p), simply because many of the latter can be made larger by adding edges
which would have created broken cycles in Kn. So we expect to get a lower bound

for ε(n, p) if we calculate
S′
n
(p,−1)

Sn(p,−1)
. This can be done as follows,

S′n(p,−1)

Sn(p,−1)
=
d

dx
log
(

(px)n(pn)n−1
)

∣

∣

∣

∣

x=−1

= n−

n−1
∑

i=0

1

1 + ip

We see that for p = 1 the bound coincides with the exact value. For p = (n/2)−1,338

corresponding to trees, we get a value which is slightly lower than the exact (n−1)/2.339

Further we see that for a fixed p > 0 the bound will be of the form n−O(logn).340

In Figure 5 we have plotted ε(10, k), our previous upper bound, and our lower341

bound. In Figure 6 we have plotted both bounds for ε(40, p).342
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