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Abstract. In this paper we discuss the two variable Ising polyno-
mial in a graph theoretical setting. This polynomial has its origin in
physics as the partition function of the Ising model with an external
field. We prove some basic properties of the Ising polynomial and
demonstrate that it encodes a large amount of combinatorial inform-
ation about a graph. We also give examples which prove that certain
properties, such as the chromatic number, are not determined by the
Ising polynomial. Finally we prove that there exists large families of
non-isomorphic planar triangulation with identical Ising polynomial.

1. Introduction

In graph theory a number of different polynomials associated to a graph
has been introduced over the years, and it has repeatedly turned out that
they are in fact specialisations of the flagship of this armada of polyno-
mials, the Tutte polynomial. The Tutte polynomial was introduced by
Tutte in 1947 [Tut47] after he had observed that a number of interesting
graph parameters satisfied similar recursive identities. The Tutte poly-
nomial contains important polynomials such as the chromatic polynomial
[RT88], the Jones polynomial of a knot and the reliability polynomial of
a network, see [Wel93] for a survey.
In the 1970’s it was also realised that the Tutte polynomial had an im-

portant role to play in statistical physics as well. In 1925 Ising and his
thesis advisor Lenz [Isi25] introduced the Ising model for magnetism. In
this model a “spin” of value ±1 is assigned to every vertex in a graph G.
An edge with equal spins at the endpoints is given an energy of 1 and
one with unequal endpoints an energy of −1. The total sum of the spin is
called the magnetisation. Summing over all such spin assignments we get a
generating function Z(G, x, y), here called the Ising polynomial, where the
coefficient of xiyj counts the assignments with energy i and magnetisation
j. The Ising model now studies how magnetisation and energy are correl-
ated under a suitable probability measure on the set of spin assignments.
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This model was later extended to the Potts modell, which allows more
than just two values of the spin. In 1972 Fortuin and Kasteleyn [FK72]
introduced a new representation for the Potts model, where the magnet-
isation was not included, called the random-cluster model, see [Gri06] for
a textbook treatment. It was then realised that the generating function
controlling this model is in fact equivalent to the Tutte polynomial. See
[Sok05] for a recent survey of the many results connecting the Tutte poly-
nomial and the random cluster model to various topics in graph theory
and physics.
For the Ising model we can find the restricted polynomial Z(G, x, 1)

from the Tutte polynomial of G. However, since this polynomial no longer
contains the total magnetisation of the spins the random cluster model
does not capture all properties of the original Ising model. There has
been many interesting results specifically for the Ising model in the physics
literature over the years. Such as [LY52] where it is shown that for a fixed
x the zeros of Z(G, x, y) lie on a circle in the complex plane, but the full
Ising polynomial Z(G, x, y) has not received the same attention in the
graph theoretical literature.
Our current aim is to demonstrate that the Ising polynomial Z(G, x, y)

is an interesting polynomial from a graph theoretical perspective and study
some of its properties. Interestingly we will show that although Z(G, x, 1)
is determined by the Tutte polynomial of G the full polynomial Z(G, x, y)
is not, e.g. unlike the Tutte polynomial it is not trivial function when G
is a tree. In the other direction we will also show that the Tutte polyno-
mial is not determined by the Ising polynomial. We thus have a graph
polynomial which, although related to, is essentially different from the
Tutte polynomial. Just like for the Tutte polynomial there are known
graph polynomials which are contained in the Ising polynomial, e.g. the
matching polynomial and for regular graphs the independence polynomial.
Perhaps the first two members of a new armada.

2. Definitions and relations

We will now give the formal definition of the Ising polynomial. In fact
we will give two equivalent definitions and demonstrate that the Ising
Polynomial is also equivalent to a second polynomial related to eulerian
subgraphs of G. The first definition is the original physics definition in
terms of “spin states” on the vertex set ofG and the second a reformulation
of this definition in terms of edge cuts in G.
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2.1. The state sum definition. We will first define a few terms needed
for the definition of the Ising polynomial, due to the Ising polynomials
origin as a physical model for phase transitions in magnetic materials the
terminology has a physical flavour. We let G be a simple graph, V (G) it’s
vertex set, and E(G) its edge set.
A state σ on G is a function σ : V (G) → {−1, 1}, the value of σ at a

vertex v is called the magnetisation of v.

Definition 2.1. Given a state σ the energy E(σ, e) of an edge e = (u, v)
in G is E(σ, e) = σ(u)σ(v), and the energy E(σ)of the state σ is the sum
of the energies of the edges, that is

E(σ) =
∑

e∈E(G)
E(σ, e)

Definition 2.2. The magnetisation M(σ) of a state σ is the sum of the
magnetisations of all the vertices in G, that is,

M(σ) =
∑

u∈V (G)
σ(u)

We let Ω denote the set of all states on G.
We can now define the Ising polynomial :

Definition 2.3 (The Ising Polynomial). The Ising polynomial is

Z(G, x, y) =
∑

i,j

ai,jx
iyj =

∑

σ∈Ω
xE(σ)yM(σ)

Here we can note two things about Z(G, x, y). First, Z(G, x, y) is a
Laurent-polynomial rather than a polynomial, it can have monomials with
negative, but integer, powers. Second it is also the generating function
for the number of states on G with given magnetisation and energy. The
following simple lemma will later be useful.

Lemma 2.4. The exponents of x in Z(G, x, y) is at most n, and at least
−n. The exponents of y in Z(G, x, y) is at most m, and at least −m.

Another way to look at the state sum definition is to consider a state on
G as a graph homomorphism from G to a weighted K2 with loops on both
vertices, the vertices have weights y and y−1, the loops have weight x and
the ordinary edge weight x−1. Recently [FLS07] has shown that a large set
of models from statistical mechanics, having a property called reflection
positivity, are equivalent to counting weighted graph homomorphisms in
this way.
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2.2. Cuts and T -joins. A more graph theoretical interpretation of the
Ising polynomial can be given in terms of cuts. The values of a state σ
defines a bipartition of the graph G such that all the edges with negative
energy have one endpoint in each partition. The coefficient ai,j thus enu-
merates edge cuts in G such that there are (m− i)/2 edges in the cut and
(n− j)/2 vertices in one part of the bipartition.

Definition 2.5 (Cut). A cut [S, S̄], where S̄ = V \ S, in a graph G =
(V,E) is a subset of edges, induced by a partition S ∪ S̄ = V of the
vertices of G, that have one endpoint in S and the other in S̄. We let
∣

∣[S, S̄]
∣

∣ denote the number of edges with exactly one endpoint in S.

In this notation we can give the following equivalent definition of the
polynomial

Definition 2.6 (The Ising Polynomial). The Ising polynomial is now
defined as

Z(G, x, y) =
∑

i,j

ai,jx
n−2iym−2j,

where ai,j counts the number of cuts [A,B] of V (G) such that |A| = j and
|[A,B]| = i.

A polynomial closely related to the Ising polynomial is what we call the
van der Waerden polynomial. This polynomial is a multivariate general-
isation of a polynomial studied by van der Waerden in [vdW41].

Definition 2.7 (van der Waerden Polynomial).

W (G, t, u) =
∑

i,j

bi,ju
itj ,

where bi,j is the number of subgraphs of G with i edges and j vertices of
odd degree.

As we will now prove, the two polynomials are in fact equivalent and can
be transformed into each other by a nontrivial change of variables. This
transformation is best formulated using T -joins.

Definition 2.8 (T-join). A T-join (T,A) in a graph G = (V,E) is a subset
T ⊆ V of vertices and a subset A ⊆ E of edges such that the vertices in T
are incident with an odd number of edges in A and the vertices in V \ T
are incident with an even number of edges from A.

The relation between the number of cuts and the number of T -joins can
now be given.
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Theorem 2.9. Let G = G(V,E) be a graph, ai,j the number of cuts with
i vertices in one part and j edges between the parts and let bi,j be the
number of T-joins with i odd vertices and j edges. Then
∑

ij

bi,jx
iyj = 2−|V |

∑

ij

ai,j(1− x)
i(1 + x)|V |−i(1− y)j(1 + y)|E|−j

Proof. Fix a subset T ⊆ V of vertices and a subset A ⊆ E of edges from
the graph G = G(V,E). Let S ⊆ V be another subset of vertices and
[S, S̄] be the cut defined by the edges from S to S̄ = V \S. Let the weight
of the vertices in T ∩S be −x, the weight of the vertices in T ∩ S̄ be x, the
weight of the edges from A that lies in the cut [S, S̄] be −y and the rest
of the edges from A have weight y. Let the total weight of (T,A) with
respect to the cut [S, S̄] be the product of the weights of the edges and
vertices in (T,A). We say that the weight is positive if the coefficient of

x|T |y|A| is positive and negative otherwise.
If (T,A) is not a T-join, there does exist a vertex v that either is incident

with an odd number of edges from A and does not belong to T , or is
incident with an even number of edges from A and belongs to T . In either
case we have a bijection between cuts with v ∈ S and v /∈ S (we simply
move the vertex v between S and S̄) that give the same weight to our
choice of (T,A) except that they have different signs and thus cancel out
when summed over all cuts.
If (T,A) indeed is a T-join the weight will always be positive since we

either have an even number of vertices in T ∩ S and an even number of
edges crossing the cut or an odd number of vertices in T ∩ S and an odd
number of edges crossing the cut. All in all we end upp with an even
number of minus signs and thus a positive weight.
If we now sum over all choices (T,A) and S we will count each T-join

2|V | times. If we rearrange our summation (i.e. we first choose a cut and
then go through all choices of T and A) we get the theorem. �

The same reasoning also gives an inverse relation.

Corollary 2.10. With the same notation as in Theorem 2.9 we have
∑

ij

ai,jx
iyj = 2−|E|

∑

ij

bi,j(1− x)
i(1 + x)|V |−i(1− y)j(1 + y)|E|−j

Proof. If we choose a T-join instead of a cut the weight of (T,A) will always
be positive if and only if (T,A) is a cut. In other cases the contribution
will once again cancel out. �
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3. Basic properties of the Ising polynomial

For graphs with several components the Ising polynomial factors in terms
of the polynomials of the components.

Theorem 3.1. If G has components G1 and G2 then Z(G) = Z(G1)Z(G2),
and W (G, t, u) =W (G1, t, u)W (G2, t, u)

Proof. Immediate by Definition 2.6 since given any pair of bipartitions
(A1, B1) and (A2, B2) of G1 and G2 respectively we get a cut [A,B] =
[A1 ∪A2, B1 ∪B2] with |[A,B]| = |[A1, B1]] + |[A2, B2]|. �

Recall that the join of two graph G1 and G2 is the graph obtained by
taking the disjoint union of the two graphs and adding an edge from every
vertex in G1 to every vertex in G2.

Theorem 3.2. If the a graph G is the join of two graphs G1, and G2 with

Z(G1, x, y) =
∑

i,j

a1i,jx
iyj

and

Z(G2, x, y) =
∑

i,j

a2i,jx
iyj

then

Z(G) =
∑

i,j;k,l

a1i,ja
2
k,lx

i+k+jlyj+l

Proof. Let σ1 be a state on G1 with energy i and magnetisation j, and σ2
a state on G2 with energy k and magnetisation l. For every such pair of
states there is a state σ on G whose restriction to the subgraph G1 is σ1,
and likewise for G2 and σ2.
The state σ has magnetisation j + l, and we also want to determine

its energy. We can assume that the state σ1 has a vertices with spin −1
and b, with spin +1, and that the state σ2 has c vertices with spin −1
and d, with spin +1. This means that among the edges with exactly one
endpoint in G1 there will be ac+bd edges with positive energy and ad+bc
with negative energy. This gives a total contribution to the energy from
these edges of

ac+ bd− ad− bc = (a− b)(c− d) = jl.

The edges within the two subgraphs contribute i and k to the energy and
we get a total of i+ k + jl.
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Summing over all pairs of states σ1, σ2 gives the Ising-polynomial of G
as stated in the theorem. �

The Ising polynomial of the complete graph has a particularly simple
structure which we will make use of.

Example 3.3. Consider the complete graph Kn. Any state with a negat-
ive spins will have magnetisation n− a and energy

(

a
2

)

+
(

n−a
2

)

− (n− a)a.
Thus the Ising polynomial of a complete graph with n vertices will be

Z(Kn, x, y) =
n
∑

a=0

(

n

a

)

x(
a

2
)+(n−a

2
)−(n−a)ayn−a

The state sum definition allows us to construct the Ising polynomial of
the complement of a graph from the Ising polynomial of the graph and
Ising polynomial of Kn.

Theorem 3.4. Let G be a graph on n vertices. The Ising polynomial of
the complement G of G is given by

Z(G) =
∑

ij

ai,jx
(a
2
)+(n−a

2
)−(n−a)a−iyj ,

where a = n−j
2 .

Proof. Let σ be a state on G with energy i and magnetisation j. Since G
and G have the same vertex set σ will also be a state on G with the same
magnetisation.
Given a state on a graph and its complement we see that the energies

of the two must sum to the energy of the corresponding state on the
complete graph on n vertices, since the two graphs partition of the edges
of the complete graph.
The number of negative spins in the state is a = n−j

2 and so we find
that the energy of the state on the complement of G is

(

a

2

)

+

(

n− a

2

)

− (n− a)a− i

as required. �

It is also possible to give recursive expressions for the Ising Polynomial
by using partial states. We say that (σ,H) is a partial state on G if H
is a subgraph of G and σ is a state on H. Given a state σ on G and a
subgraph H ⊂ G we let σ|H denote the restriction of σ to V (H).
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Definition 3.5.

Z(G, x, y, (σ′, H)) =
∑

σ∈Ω,σ|H=σ′
xE(σ)yM(σ)

Given a set H ⊂ V (G) let the components of G \ H be G1, . . . , Gk and
let G′i be the subgraph induced by V (Gi) ∪ V (H). With this we can now
express the Ising polynomial of G as

Z(G, x, y) =
∑

σ′∈Ω(H)

∏k
i=1 Z(G

′
i, x, y, (σ

′, H))

Z(H,x, y, (σ′, H))k−1

Note that Z(H,x, y, (σ′, H)) is simply a monomial. This relation is very
similar to that which exist for the chromatic polynomial when H is a
clique cut-set, see [RT88].
This relation becomes especially useful if H = v is simply a cut-vertex

in G. For this case we find

Z(G, x, y) =
∑

σ′(v)∈Ω(v)

∏k
i=1 Z(G

′
i, x, y, (σ

′, H))
Z(H,x, y, (σ′, H))k−1

,

where Z(H,x, y, (σ′, H) takes only the values y and y−1. Further we can
use the fact that

Z(H,x, y, (−σ′, H)) = Z(H,x, y−1, (σ′, H))

to halve the number of distinct polynomials we need to compute. It is
easy to check that this gives a polynomial time algorithm for comput-
ing the Ising polynomial of a tree. In fact, using the general dynamic
programming methods described in [Ree03] it is straightforward to prove
that

Theorem 3.6. For every fixed k there exist a polynomial time algorithm
for computing the Ising polynomial of a graph with treewidth at most k.

4. Graph Invariants

The Ising polynomial of a graph G encodes a large amount of information
about G. Our next aim to to give some examples of useful graph properties
which can be found from the coefficients of either Z(G, x, y) orW (G, t, u).
We first have two theorems which apply to general graphs.

Theorem 4.1. The following properties can be deduced directly from the

ising polynomial Z(G, x, y),

(1) The degree-sequence of G.
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(2) The number of components of G and their size.
(3) The smallest edge-connectivity of the components of G.
(4) The size of a maximal edge-cut in G.
(5) Whether G is bipartite or not.

Proof. (1) Given a vertex v consider the state where σ(v) = −1, and
σ(y) = 1 for other vertices y. This state has magnetisation n − 2
and energy m− 2d(v). These are the only states with magnetisa-
tion n− 2 and thus the collection of monomials with energy n− 2
is the generating function for the degree sequence of G.

(2) Let p(y) be the polynomial consisting of the monomials of Z(G, x, y)
with energy m, divided by xm. Assume that G has components
G1, . . . , Gt and ni = |V (Gi)|. The polynomial p(y) is of the form

p(y) =
t
∏

i=1

(yni + y−ni).

Since (yni + y−ni) has a unique factorisation we can find the num-
bers ni simply by factoring p(y), as a polynomial over the integers.

(3) Let [S, S̄] be a minimal edge cut in G and let σ be the state which
is 1 on S and -1 on S̄. This state will have energy m − 2

∣

∣[S, S̄]
∣

∣,
and since it is a minimal cut all other states will an energy m or
less than m − 2

∣

∣[S, S̄]
∣

∣. Thus we can find the edge-connectivity
by looking at the monomial in Z(G, x, y) with the second highest
energy.

(4) Let [S, S̄] be a minimal edge cut in G, let a be the number of
edges induced by S plus the number of edges induced by S̄, and
let b =

∣

∣[S, S̄]
∣

∣. We now know that a + b = m, and that if σ is

the state which is 1 on S and -1 on S̄ then the energy of σ will be
a − b. So, given a monomial xiyj we know that this corresponds
to a cut of size m−j2 . By maximising this over all monomials in
Z(G, x, y) we can find the size of a maximum cut in G.

(5) G is bipartite if and only if the largest size of an edge cut is m
�

Theorem 4.2. The following properties can be deduced directly from the

van der Waerden polynomial W (G, t, u),

(1) The girth of G.
(2) The matching polynomial of G.
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(3) The number of subgraphs of G with i edges and no vertices of odd
degree. The generating function is given by W (G, t, 0)

Proof. (1) Let j be the smallest number for which there is a monomial
of the form tiu0, i > 0, in W (G, t, u). This is a minimal subgraph
of even degree, and thus a shortest cycle in G.

(2) A matching in G with k edges is the only subgraph with exactly
2k vertices of odd degree and exactly k edges. Thus we can find
the matching polynomials by reading the monomial of the form
tku2k in W (G, t, u).

(3) Trivial
�

For regular graphs we can deduce even more, thanks to the fact that
we can make a direct connection between energy and magnetisation for
certain types of states on G. Our main example here is the clique number
and independence number of G, and in fact the numbers of cliques and
independent sets.

Theorem 4.3. For an r-regular graph the Ising polynomial Z(G, x, y)
determines the the number of k-cliques and the number of independent
sets of size k.

Proof. If we can find the number of independent sets of size k then we can
find the number of cliques by using Theorem 3.4.
Let X be a set of k vertices and let σ be the state which is -1 on X

and 1 on X̄. The energy of σ will be m− 2rk+ a, where a is the number
of edges induced by X. Thus, if X is an independent set the energy
will be m − 2rk, and this is the only type of state with this energy and
magnetisation n−2k. Accordingly the number of independent sets of size
k will be coefficients of xm−2rkyn−2k in Z(G, x, y). �

The independence polynomial of a graph is the polynomial I(G, x) =
∑

i aix
i where ai counts the number of independent sets on i vertices

in G. Since the Ising polynomial allows us to count the number of inde-
pendent sets of a given size this means that we can find I(G, x), given
Z(G, x, y) for a regular graph G. The independence polynomial is an im-
portant function in both statistical mechanics and general probabilistic
combinatorics, but a deeper discussion of its uses is beyond the scope of
this paper. However, the interested reader can find an extensive discussion
and survey in [SS05, SS06].
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For trees both edge-connectivity, girth, 2-factors and even-subgraphs
are trivial and can thus not be used to distinguish two trees from each
other. It is also an easy exercise to show that Z(G, x, 1) is the same for
all trees on n vertices. However due to the special structure of trees a few
other properties can be deduced from the Ising polynomial of a tree.

Lemma 4.4. Given the Ising polynomial of a tree T we can find the
following,

(1) The diameter of T .
(2) The characteristic polynomial of G.

Proof. (1) The diameter of T is given by the length of the longest
path in T . From the van der Waerden polynomial we can find the
number of subgraphs of T with i edges and two vertices of odd
degree. Since T has no cycles such a subgraph is a path and the
diameter is given by the largest i for which bi,2 is non-zero.

(2) By 4.2 we can find the matching polynomial of T and by a stand-
ard theorem, see [God93], the characteristic polynomial and the
matching polynomial are equal for trees.

�

5. Examples and Results for small graphs

Given that the Ising polynomial, together with the van der Waerden poly-
nomial, determines many non-trivial properties of G it is natural to ask
which properties are not captured by Z(G, x, y). Just like for the other
common graph polynomials it turns out that the Ising polynomial is not
a complete graph invariant, i.e. there are non-isomorphic graphs with the
same Ising polynomial. We will say that two such graphs are isomagnetic,
and otherwise that the graph is magnetically unique.
An exhaustive computer search among the small graphs proves that the

smallest graphs which are not magnetically unique have 7 vertices. There
are 36 such graphs, and the equivalence classes form 18 graph pairs. One
such pair is shown in Figure 1.
By Lemma 4.4 two isomagnetic trees must also be co-spectral, i.e. their

adjacency matrices must have the same eigenvalues, but as demonstrated
in [McK77] most trees are not determined by their spectrum. For the
Tutte polynomial the situation is even simpler, all trees on n vertices have
the same Tutte polynomial. In view of these observations it is interesting
to see how well the Ising polynomial separates trees. In Table 1 we give
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Figure 1. The smallest non-unique graphs

the results of a computation for all trees on at most 18 vertices. As we
can see the smallest pair of isomagnetic trees, shown in Figure 2, have 11
vertices, which is larger than the smallest examples of co-spectral trees
[McK77]. The proportion of trees which are magnetically unique does not
seem to fall as n increases, but this could just be because we are working
with too small trees. Further, all equivalence classes up to 18 vertices are
pairs.

n |Tn|
11 235 2
12 551 4
13 1301 2
14 3159 14
15 7741 8
16 19320 36
17 48629 52
18 123867 92

Table 1. Tn denotes the set of non-isomorphic trees on n
vertices. The last column gives the number of trees which
are not magnetically unique.

Since there are graphs which have the same Tutte polynomial, and also
the same characteristic polynomial, but different Ising polynomials it is
natural to look for examples of isomagnetic graphs which differ in the first
two polynomials. In Figure 3 we show one such pair. These two graphs
have the same Ising polynomial, in 5.1, we give the half of the polynomial
with non-negative y-exponents.
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Figure 2. Isomagnetic trees on 11 vertices

Figure 3. Isomagnetic graphs with different Tutte and
characteristic polynomials.

(

5

x5
+
10

x3
+
8

x
+ 9x+ 3x3

)

y +

(

3

x3
+
7

x
+ 5x+ 5x3 + x5

)

y3+

+
(

x+ 3x3 + 2x5 + x7
)

y5 + x9y7 (5.1)

The Tutte polynomials of the two graphs are quite large so instead we
show their chromatic polynomials, which are evaluations of the respective
Tutte polynomials:

−12x+ 36x2 − 43x3 + 26x4 − 8x5 + x6

−14x+ 39x2 − 44x3 + 26x4 − 8x5 + x6

The characteristic polynomials are:

−8x+ 6x2 + 17x3 − 4x4 − 9x5 + x7

2− 10x+ 4x2 + 17x3 − 4x4 − 9x5 + x7

Thus we can neither find the spectrum nor the Tutte polynomial from the
Ising polynomial. In fact, by two slightly denser graphs, shown in Figure
4, we can also find isomagnetic graphs with different chromatic numbers
and different clique numbers. Recall that by Theorem 4.3 the latter is
determined by the Ising polynomial if G is regular.
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Figure 4. Isomagnetic graphs with different clique numbers.

6. Families of isomagnetic graphs

Our next aim is to prove that there exists infinitely many graphs which are
not magnetically unique, and also that there exists arbitrarily large sets of
pairwise isomagnetic graphs. Our construction will be an adaption of the
so called rotor graph construction used by Tutte in connection with the
Tutte polynomial. See Chapter 6 of [Tut98] for a very enjoyable discussion
of this type of construction. Using this construction we will be able to
find large sets of isomagnetic planar triangulations.
In Figure 5 we show a graph which we will call the Rotor graph R. Note

that R has three-fold rotational symmetry but no other automorphisms.
Analogously with Tutte’s construction we now have the following simple

2

1

3

4

Figure 5. The rotor gadget R.

lemma.

Lemma 6.1. Let G be a planar graph which contains R as an induced
subgraph, and let G′ be the graph obtained from G by replacing R by its
reflection in the line through vertices 1 and 4. Then G and G′ have the
same Ising polynomial.
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Proof. This follows from the simple observation that we have, via reflec-
tion, a bijection between states in G and G′, which preserves the energy
and magnetisation of the states. �

This can also be expressed using the partial state expression for the Ising
polynomial, with H as the graph induced by vertices 1, 2, 3.
Next we will need two theorems regarding the properties of uniform

random planar triangulations.

Theorem 6.2 ([GW04]). Let M be a planar 3-connected triangulation

and let Xn be the random variable counting the number of copies of M in
a random 3-connected triangulation on n vertices.
Then there exists constants AM and BM such that

Xn−nAM√
nBm

converges

in distribution to the standard normal random variable, as n→∞.

Theorem 6.3 ([RW95]). Let T be a random planar 3-connected trian-
gulation on m edges. Then the probability that T has a nontrivial auto-
morphism is less than Cm, for some constant 0 < C < 1.

We can now prove that the large equivalence classes we want actually
exists.

Theorem 6.4. For every N there exists a family of at least N non-
isomorphic isomagnetic graphs.

Proof. By Theorem 6.2 we can find a graph G which contains at least
log2N edge disjoint copies of R, since any copy of R can only overlap
with a bounded number of other copies. By Theorem 6.3 we can also
find such a G with a trivial automorphism group. Let X be the set of
graphs obtained by applying the operation in Lemma 6.1 to every subset
of copies ofM in G. By the previous observations the graphs inX are non-
isomorphic and have the same Ising polynomial, and X has cardinality at
least N . �

In fact, as described in [Tut98], these graph families will also have the
same Tutte polynomial. An obvious question is if there is any natural
graph invariant which separates the graphs in one of these families? As
the proof actually shows that for most triangulations we can find some
non-zero number of iso magnetic graphs we also have this corollary

Corollary 6.5. There exists a constant 0 < D < 1 such that the prob-
ability that a random planar 3-connected triangulation on n vertices is
magnetically unique is less than Dn.

We also conjecture that
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Conjecture 6.6. Given any c > 0 and c
n
< p(n) ≤ 1/2 the probability

that a graph from G(n, p(n)) is magnetically unique is less than Dn, for
some D < 1.

Using the examples of small isomagnetic trees this conjecture could be
approached for p(n) < 1

n
, but for larger p something better is needed.

7. Conclusions

The multivariate Ising polynomial and the Tutte-polynomial share a lot
of information since they both contain the partition function of the q = 2
random cluster model, which is equivalent to Z(G, x, 1). However as our
examples show they are also clearly distinct, as witnessed by the fact
that the Ising polynomial is a fairly strong invariant for trees and the
Tutte polynomial is identical for trees of the same order. Finding further
similarities and differences between the two polynomials is an interesting
area for further research.
Another contrast between these two polynomials is that the Tutte poly-

nomial is easily extended to a polynomial for matroids rather than just
graphs, as discussed in e.g. [Sok05]. For the Ising polynomials this matroid
connection comes from the cut definition of the Ising polynomial, which
is easy to generalise to a matroid when y = 1. However, for a general
matroid we do not have a natural generalisation of the number of vertices
on each side of a cut, and thereby we do not know how to define the
polynomial for a general y.
For the van der Waerden polynomial the situation is slightly better. We

do not know what the best generalisation of W (G, t, u) to matroids will
be, but we have at least one possibility. Let M be a matroid with base
set E(M) and let G be a subset of E(M). For a subset H of G define

d(H,M) = min
y∈C(M)

|H △ y|,

where A△ B denotes the symmetric difference of the two sets A and B,
and C(M) is the set of circuits of the matroid M . We can now define

W (M,G, t, u) =
∑

H⊂G
t|H|u2d(H,M).

If we take M to be the cycle matroid Kn and G as the set of edges of a
graph on n vertices this coincides with our original definition of the van
der Waerden polynomial for a graph G. Whether this polynomial has an
interesting structure for other matroids remains to be seen.
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