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Abstract5

We give an optimal degree condition for a tripartite graph to have6

a spanning subgraph consisting of complete graphs of order 3. This7

result is used to give an upper bound of 2∆ for the strong chromatic8

number of n vertex graphs with ∆ ≥ n/6.9

1 Introduction10

The basic graph theoretical terms and notation not defined here can be11

found in [Die97]. A balanced r-partite graph is a an r-partite graph with12

vertex set V partitioned into V0 ∪ . . . ∪ Vr−1 such that |Vi| = n. We may13

think of such a graph as a subgraph of Kr(n), the blow-up of Kr, where the14

blow-up G(n) of a general graph G is obtained by replacing each vertex vi in15

G with an independent set Vi of size n and each edge vivj with a complete16

bipartite graph K(Vi, Vj).17

We say that a graph G has a Kr-factor if it contains n vertex disjoint18

r-cliques — copies of the complete graph on r vertices. Hence a Kr-factor19

is a spanning subgraph with components which are complete graphs on r20

vertices. In this paper we prove the following theorem.21

Theorem 1. If G ⊂ K3(n) with δ(G) ≥ 3
2n then G has a K3-factor.22

This theorem is optimal for a minimum degree condition. To see that,23

join the vertices in V0 to all vertices of V1 ∪ V2 and then join the vertices24

of V1 to V2 such that the bipartite graph between V1 and V2 contains no25

perfect matching but has minimum degree at least 12n− 1.26

For general Kr-factors, we obtain the following result.27
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Theorem 2. Let ls :=
∑s
k=1 1/k. Any subgraph G of Kr(n) with minimum

degree

δ(G) > (r − 1− 1/(1 + lr−2))n+ (r − 1)lr−2/(1 + lr−2),

has a Kr-factor.28

This is based on a minimum degree condition, (2) below, by G. Jin29

for finding an r-clique. However, this is far from optimal for large r as is30

demonstrated by Alon’s and Haxell’s result in [Alo92] and [Hax04] discussed31

below.32

The problem finding minimum degree conditions for finding Kr-factors33

in balanced r-partite graphs can also been formulated as the problem finding34

a maximum degree condition for the strong chromatic number of graphs. If35

G = (V,E) is a graph then the strong chromatic number of G, denoted36

sχ(G), is the minimum n such that the following hold: Any graph being37

the union of G and a set of vertex-disjoint n-cliques is n-colourable. Here38

we take the union of edges, adding vertices to G if necessary. Taking the39

complementary graph, we see that this is exactly asking for a Kr-factor in40

a balanced r-partite graph, each part having n vertices. Note that, for the41

complete bipartite graph Kn,n, we get sχ(Kn,n) = 2∆(Kn,n).42

In [Alo92] N. Alon proves that sχ(G) ≤ K∆(G) for a quite large constant43

K. The value obtained is K = 220000. In [MR02] it is pointed out that a44

careful calculation would reduce it to K = 1010 the constant is by several45

authors believed to be smaller.46

Conjecture 1. For all graphs G,

sχ(G) ≤ 2∆(G)

The best bound published so far is sχ(G) ≤ 3∆(G)− 1, given by Haxell47

in [Hax04]. From Theorem 1, we conclude that the strong chromatic number48

can be bounded by 2∆(G) if |V (G)| ≤ 6∆(G). This result should not be49

compared with the more complete results of Alon and Haxell. But, the50

authors think that the tripartite case covered above has its own interest,51

apart from verifying the conjectured bound for this case.52

Actually, the problem of finding degree conditions that guarantees an53

r-clique in vertex balanced r-partite graphs seems to be far from settled.54

Following notation in [Bol78], we take δr(n) as the largest minimum degree55

of a Kr-free subgraph of Kr(n). In [Jin92], G. Jin proves that δ4(G) =56
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⌈(2+ 13)n⌉ and it is proved to be a sharp minimum degree condition. In fact57

it is proved that58

lim
r→∞
(r − δr(n)/n) ≥

3

2
. (1)59

In particular, this means that the proof of Theorem 1 cannot be generalised60

immediately to the r-partite case. For general r ≥ 3, Jin obtains the upper61

bound62

δr(n) ≤ (r − 1− 1/lr−2)n, (2)63

where ls :=
∑s
k=1 1/k and this is essentially tight for r = 3, 4. For r = 3,64

the bound δ3(n) ≤ n is a result by Graver (see [Bol78]) which is used in the65

proof of Theorem 1.66

In [Bol78] it is conjectured that the inequality in (1) is actually an equal-67

ity. Note that the result by Alon on the strong chromatic number — or68

equivalently a Kr-factor — gives a nontrivial upper bound for supn δr(n)/n.69

Such a bound is posed as an open problem in this, admittedly dated, refer-70

ence book.71

Another way of developing this question would be to view Theorem 1 as72

a condition implying that a subgraph of the graph C3(n) has a C3-factor.73

Here, Cr(n) denotes the blow-up of the r-cycle Cr = {vivi+1 : i = 0, . . . , r}74

with indices reduced modulo r. A natural question would be to determine75

minimum degree conditions for a cyclic Cr-factor in a subgraph G of a Cr(n),76

where a “cyclic Cr-factor” means that each of the n components in the factor77

is an r-cycle containing exactly one vertex from each of the blown up vertices78

Vi, i = 0, . . . , r − 1. Thus, a Cr-factor need not be cyclic for even r.79

A result similar to that of Theorem 1 for cycle factors is the following80

for which we supply a sketch of proof.81

Theorem 3. If G ⊂ Cr(n) with δ(G) ≥ 3
2n+2 then G has a cyclic Cr-factor.82

A more refined, and longer, version of our proof will bring the degree83

condtion down to 32n+1. A construction similar to that following Theorem84

1 shows that 3n/2 is a lower bound on the degrees to ensure that Cr-factor85

exists in Cr(n). We conjecture that this is in fact the correct bound.86

Conjecture 2. If G ⊂ Cr(n) with δ(G) ≥ 3
2n then G has a cyclic Cr-factor.87

2 Proofs and remarks88

Let G be a balanced tripartite graph satisfying the conditions of Theorem 1.89

Induced subgraphs are denoted by G[S], where S ⊂ V (G). For S ⊂ V (G),90
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we use the notation d(x, S) for the number of edges in G joining the vertex91

x with vertices in the set S ⊂ V (G). For a subgraph H, let d(x,H) means92

d(x, V (H)). When we take the cardinality of a graph, as in |F |, we mean93

the number of edges in F . Let the three parts of G be denoted V0, V1, V2 and94

when refering to one of these parts, say Vi, the index i, should implicitly be95

reduced modulo three so that the two other parts can be referred to as Vi+196

and Vi−1, say.97

2.1 Proof of Theorem 198

We assume to arrive at a contradiction that99

G admits no full K3-factor. (3)100

We assume moreover that G is an edge maximal counterexample, so that we101

get a K3-factor by adding any edge to G. Thus G has plenty of configura-102

tions, by which we mean an incompleteK3-factor F = F1∪· · ·∪Fn−1 of n−1103

vertex disjoint copies of K3 in G. Denote by X = X(F ) = V (G) \ V (F ),104

the three vertices not contained in F , where xi denotes the element of X in105

part Vi, for i = 0, 1, 2. For a vertex u in V \ X, let Fu denote the unique106

triangle in F that covers u.107

A vertex u ∈ Vi \ {xi} is exchangeable relative the current configuration108

if xi makes up a triangle Tu = G[{xi} ∪ V (Fu) \ {u}] together with the109

other vertices of the clique Fu in F containing u, i.e. if d(xi, Fu) = 2. Let110

Y = Y (F ) denote the set of exchangeable vertices and let Yi = Y ∩Vi. Since111

d(v) ≥ 3n/2, we have at least112

|Yi| ≥ d(xi, V \X)− (n− 1) ≥ n/2 + 1− d(xi, X) (4)113

exchangeable vertices in the part Vi.114

If u ∈ Vi is exchangeable, we may exchange or interchange u with xi in
the obvious manner: We obtain the new configuration F ′ = (F \ Fu) ∪ Tu.
Note that, after this exchange, xi will be an exhangeable vertex in F

′. After
this operation, the set of exchangeable vertices, Y ′ = Y (F ′), relative F ′ will
coincide with the set of exchangeable vertices Y = Y (F ) relative F except,
possibly, in the part Vi and on the vertices of V (Fu), i.e. Y (F )△ Y (F ′) ⊂
Vi∪V (Fu). It follows that a subset S ⊂ X∪Y of at most three exchangeable
vertices, such that

|S ∩ Vi| ≤ 1
and such that for all components Fj of F

|S ∩ Fj | ≤ 1
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is free in the following sense: We can exchange the vertices in S \X one by115

one to obtain a configuration F ′ such that S ⊂ X ′ = V (G) \ V (F ′).116

From (3) we deduce that117

H contains no free triangle T , (5)118

i.e. a subgraph T ∼= K3 such that V (T ) is a free set, since exchanging V (T )119

for X would give a full K3-factor.120

Let H = H(F ) = G[X ∪Y ] denote the subgraph of G induced on the set
of exchangeable vertices and X. We will consider the following properties
of the configuration F

G[X] contains zero edges (X0)

G[X] contains one edge, (X1)

G[X] contains two edges. (X2)

H = G[X ∪ Y ] contains a triangle, (T)

We can clearly exclude the case that G[X] has three edges, since that would121

mean that F ∪G[X] is a full K3-factor.122

Let (A)  (B) mean the following: Given a configuration F satisfying123

the property (A), we can either reach a contradiction to our assumption124

(3) that G contains no K3-factor or, by a series of legal exchanges, reach a125

configuration F ′ that satisfies the property (B). We say that property (A)126

can be reduced to property (B). The theorem is proved as soon as we prove127

the following two lemmas. The first lemma allow us to reduce to the case128

(X0).129

Lemma 4. We have the following reductions.130

1. (T) (X0).131

2. (X1) (T).132

3. (X2) (X0) ∨ (X1) ∨ (T).133

The following lemma takes care of the remaining case.134

Lemma 5. The property (X0) implies that G contains a full K3-factor and135

thus leads to a contradiction with (3).136
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2.2 Proof of Lemma 4137

Proof of (T) (X0). Let T be a triangle of H. As pointed out above, we138

can exlude the case that T is free and hence T must share at least one edge139

with F .140

We reduce first to the case when T is contained in F : Assume without141

loss of generality that, T = u0w1u2, say, where ui ∈ Yi and where u0u1u2 =142

Fu1 is triangle in F . If w1 6= u1, we obtain the case with one of the triangles143

of H is entirely contained in F by, if x1 6= w1, interchanging x1 with w1. (If144

x1 = w1 we need to do nothing.) In this new configuration F
′, the vertex u1145

is exchangeable, together with u0 and u2 and thus Fu1 = u0u1u2 is a triangle146

in F ′ ∩H ′. The situation is depicted in the right hand side of Figure 1.147

Thus we have reduced to the case when T ⊂ H ∩F . As is demonstrated148

in figure 1, this implies that G[X] = ∅: If, say, the edge x0x2 was present,149

then x0u1x2 is a free triangle; the edges x0u1 and u1x2 are due to the fact150

that both u0 and u1 are exchangeable vertices.

u1

u2u0

w1

x1x0 x2

T

u1

u2
u0

x1

x0 x2

T

Figure 1: Left: The case when one edge of the triangle T belongs to F .
Right: The case when T ⊂ F ∩ H. Fat edges are edges in F and square
vertices are vertices of X ∪ Y .

151

Proof that (X1) (T). If G[X] contains exactly one edge. Then d(xi, X) ≤152

1, for i = 0, 1, 2 and we obtain, on account of (4), that153

|Yi| ≥ n/2, for i = 0, 1, 2. (6)154

We show that155

(6) =⇒ (T). (7)156

By (6) we have |(X ∪ Y ) ∩ Vi| ≥ n/2 + 1 and we can take a balanced
induced subgraph H ′ of H = G[Y ∪X] with n′ = ⌈n/2⌉+1 vertices in each
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part. For u′ ∈ H ′, we have degree

d(u,H ′) ≥ d(u)− d(u, V \ V (H ′)) ≥ 3n/2− 2n+ 2n′ > n′.

By Gravers bound, i.e. the bound (2) for r = 3, d(u,H ′) > δ3(n
′) = n′ and157

hence H ′ contains a triangle, which means that we have reduced to the case158

(T).159

Proof that (X2) (X0) ∨ (X1) ∨ (T). Assume without loss of generality that160

G[X] = {x0x1, x1x2}. By (4), |Yi| ≥ n/2 for i = 0, 2 and |Y1| ≥ n/2− 1. We161

may assume that |Y1| = n/2 − 1 since we would otherwise have (6) which162

by (7) implies (T). That (4) holds with equality for |Y1| implies that for all163

triangles Fj in the partial factor F , we have164

d(x1, Fj) ≥ 1, (8)165

since otherwise the counting in (4) gives a higher number.166

If i = 0 let ī = 2 and if i = 2 let ī = 0. We have at least

d(xi)− d(xi, X)− d(xi, V \ (Y ∪X)) ≥ 3n/2− 1 + 2(n− 1) + |Y1|+ |Yī|

edges between xi and Y ∪X. Since |Yī| ≥ n/2, we get d(xi, H) ≥ |Y1| + 1167

which implies that d(xi, Yī) ≥ 1. It follows there is a pair (z0, z2) ∈ Y0 × Y2168

such that xi is adjacent to zī, for i = 0, 2. Note that, neither z0 nor z2 can169

be adjacent to x1, since each edge would give rise to a free triangle x0z2x1170

(or x2z0x1). By (8) this means that z0 and z2 cannot belong to the same171

triangle Fj of F and therefore {z0, z2} is a free set. By exchanging {x0, x2}172

with {z0, z2} we obtain a configuration such that G[X ′] ⊂ {z0z2} and thus173

reduce to the case (X0) or (X1).174

2.3 Proof of lemma 5175

By (4), we have |Yi| ≥ n/2 + 1 and thus

|(X ∪ Y ) ∩ Vi| ≥ n′ = ⌈n/2⌉+ 2.

Let H ′ be a balanced induced subgraph of G[X ∪Y ] on exactly 3n′ vertices.176

Then,177

d(x,H ′) ≥ ⌈3n/2⌉ − (2n− 2n′) ≥ ⌈n/2⌉+ 4 = n′ + 2. (9)178

We orient the edges of H ′ so that the edge uv is oriented −→uv if u ∈ Vi and179

v ∈ Vi+1. For x ∈ V (H ′), let d+(x) and d−(x) denote the out-degrees and180

in-degrees in this orientation of H ′, respectively.181
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Assume that −→uv ∈ H ′ is a free edge, i.e. Fu 6= Fv. Since H ′ is balanced182

we know that183

|N(u,H ′) ∩N(v,H ′)| ≥ d−(u) + d+(v)− n′. (10)184

If it holds that185

d−(u) ≥ d−(v) (11)186

then, since d−(u) + d+(v) = d−(u) + d(v,H ′)− d−(v), we get from (10) and187

(9) that188

|N(u,H ′) ∩N(v,H ′)| ≥ d(v,H ′)− n′ ≥ 2. (12)189

Thus, (11) implies that the edge uv is contained in at least two triangles190

T = uvw and T ′ = uvw′ contained in H ′, with w 6= w′. Since we assumed191

that uv is a free edge, both triangles must contain exactly one edge from F ,192

i.e., say, Fu = Fw and Fv = Fw′ , since otherwise we have obtained an free193

triangle. We cannot have the case that Fu = Fv since we assumed that uv194

was free and it also follows that vw is a free edge. Note also that this means195

the following: For any free edge −→uv ∈ H ′ satisfying (11), there is a196

continuing free edge −→vw such that uw ∈ F . (13)197

The situation is illustrated in figure 2.3.

Figure 2: Condition (11) yields two triangles containing uv. Each must
share an edge with a triangle in F , and thus a free edge ~vw that continues
~uv, such that uw ∈ F .

u v

w w
′

198

Moreover, if the inequality (11) is strict then |N(u) ∩N(v)| ≥ 3 and we199

obtain a third, then a necessarily free triangle. It follows that d−(u) ≤ d−(v)200

for all free edges −→uv ∈ H ′. In other words d− is nondecreasing in the forward201

direction along free edges.202
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Let S be the set203

S = {u ∈ V (H ′) : d−(u) = max
v∈V (H′)

d−(v)} (14)204

of vertices of maximum in-degree d−. This is therefore an absorbing set for
the oriented graph H ′. Here, (11) is satisfied with equality along all edges
−→uv, uv ∈ H ′[S]. Since

d+(u) = d(u,H ′)− d−(u) ≥ 2,

each vertex u ∈ S has at least one forward free edge −→uv, where the endpoint205

v necessarily belongs to S.206

Figure 3: The oriented 6-cycle ~C with inscribed triangles from F . We must
have two free triangles containing x1, since u1 and v1 are both exchangeable.

u0

v1

u2u1

v0

v2

x1

C

Moreover, by (13), given a free forward edge −→uv in H ′[S], we there is a207

continuation −→vw, such that vw is free and uw ∈ F . We must have w ∈ S,208

since in-degree d− is non-decreasing and hence we can repeat this construc-209

tion. Hence there is a directed cycle C of free edges where every three210

consecutive vertices uvw along C span an edge uw belonging to F . Taking211

every second vertex of this cycle yields a cycle in F , i.e. a triangle. Hence C212

must be a 6-cycle, C = u0v1u2v0u1v2u0 with two inscribed triangles from F ,213

having the structure depicted in figure 2.3. All the vertices along this cycle214

are all in Y and two belongs to, say, Y1. It follows from exchangeability that215

x1 must be adjacent to at least four distinct vertices along the cycle C but216
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this means x1 is adjacent to two consecutive vertices, say u2v0. But then217

T = x1u2v0 is a free triangle, since u2v0 is a free edge, which contradict218

(5).219

2.4 Proof of Theorem 2 (sketch)220

The argument uses the bound (2) to find a free r-clique. We let F be n− 1221

vertex-disjoint r-cliques and define X and Y and the notion of exchangeable222

vertices and free sets in the analogous manner as above. Note that the223

degree condition in Theorem 2 implies that the complementary r-partite224

graph Kr(n) \ G, has maximum degree at most ∆̃ = n/(1 + lr−2) − (r −225

1)lr−2/(1 + lr−2). It follows that the sets Yi, i = 0, 1, . . . , r, have at least226

n′ = n− ∆̃ elements and we consider an induced balanced subgraph H ′ on227

r · n′ vertices. The minimum degree of H ′ is at least (r − 1)n′ − ∆̃, which228

simplifies to (r− 1− 1/lr−2)n′+ r− 1. Thus, if we let H ′′ = H ′ \F then H ′′229

satisfies the bound in (2) so we find a Kr in H
′′ which then is necessarily230

free.231

2.5 Proof of Theorem 3 (sketch)232

Let the parts of G be denoted V0, V1, . . . , Vr−1, where indices are reduced233

modulo r. We let F ⊂ G be n − 1 vertex-disjoint admissible r-cycles and234

define X = V \ V (F ). We denote the element in X ∩ Vi by xi . A vertex235

u ∈ Vi is exchangeable if d(xi, Fu) = 2, where Fu is the cycle in F containing236

u. Let Y be the set of exchangeable vertices. Then Yi = Y ∩ Vi has at least237

n/2 + 1 elements. A set S ⊂ Y is free if |S ∩ Vi| ≤ 1 and F [S] does not238

contain any edges. It is easily checked that such a set can be exchanged239

with the corresponding subset of X.240

Let H ′ be a balanced induced subgraph of G[X ∪ Y ] with n′ = n/2 + 2
vertices in each part. We have

d(v,H ′) ≥ (3n/2) + 2− 2(n− n′) ≥ n/2 + 4 = n′ + 4.

We orient H ′ in the direction of increasing indices modulo r, and let d−(v)241

and d+(v) denote the in-degree and out-degree of v in V (H ′), respectively.242

The degree condition implies that d+(v) ≥ 4 and hence we find a directed243

cycle C = v0v1 . . . vsr, vi ∈ Yi, in H ′ where each edge vivi+1 is a free edge.244

This cycle is schematically displayed in Figure 2.5.245

We claim that we can find such a cycle C with s = 1, i.e. making just246

one round-trip. In this case it follows that V (C) is a free set and we are247
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w

u = v i

v = v i − r + 2

Figure 4: Finding a free cycle in H for Cr(n).

done. Assume for contradiction that C is the smallest cycle and that s ≥ 2.248

If along C there is some pair u = vi, v = vi−r+2, such that249

d+(u) + d−(v) ≥ n′ + 3, (15)250

then there is a vertex w ∈ V (H ′) ∩ Vi+1 which is adjacent to both u and
v and such that both uw and wv are free edges in H. As is illustrated in
Figure 2.5, we obtain the shorter cycle C ′ = wvi−r+2vi−r+3 . . . viw of free
edges. Inequality 15 must hold for some pair u = vi, v = vi−r+2 since

rs−1∑

i=0

d+(vi) + d
−(vi−r+2) =

∑

i

d(vi, H
′) ≥ rs(n′ + 4).

251

2.6 Remarks252

Another way of generalising to the case of cycles is to prescribe a local253

minimum degree condition: Let δ
′

be the minimal number of neighbours254

that a vertex x ∈ Vi has in one of the sets Vi−1 and Vi+1. (The “global255

minimum degree” is the smallest number of neighbours that a vertex x ∈ Vi256

has in Vi−1 ∪ Vi+1.) It is proved in [Joh00] that δ′ ≥ 2
3n +

√
n is sufficient257

to force a graph G ⊂ C3(n) to have a C3-factor. It is also conjectured that258

the condition for a Cr-factor should be δ
′ ≥ r+1

2r n + 1 in this case. Hence259

this local minimum degree should depend on r contrary to the fact that the260

global minimum degree does not.261
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