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Abstract

In this paper we find, for n ≤ 16, the maximum number of edges
in a 4-uniform hypergraph which does not have the complete 4-uniform
hypergraph on five vertices, K45, as a subgraph. Equivalently, we find all
optimal (n, n− 4, n− 5) covering designs for n ≤ 16.
Using these results we find find a new upper bound for the Turan

density of K45.

π(K45) ≤
1753

2380
= 0.73655 . . .

Finally we make some notes on the structure of the extremal 4-graphs for
this problem and the conjectured extremal family.

1 Introduction

Given an r-uniform hypergraph H the Turan number ex(H,n) is the maximum
number of edges in an r-uniform hypergraph on n vertices which is H-free,
i.e. it does not have H as a subgraph. For 2-uniform (hyper)graphs the Turan
numbers are well understood for the case of non-bipartite H, see e.g. [Bol04].
For r ≥ 3 we currently have only scattered results and in particular ex(Krt , n),
the Turan numbers of the complete r-uniform hypergraph on t vertices, are only
known for some small values of n, [Sid87].

It is easy to show that π(H) = limn→∞
ex(H,n)

(n
r
)
, the Turan density of H,

always exists and that ex(H,n)
(n
r
)
is a decreasing sequence [KNS64]. For r ≥ 3

π(Krt ) is not known for any t ≥ r + 1, and there are only a small number of
cases where even a conjectured value exists.
For K45 Giraud [Gir90] found an ingenious construction for K

4
5-free hyper-

graphs, based on Hadamard matrices, which implies that π(K45) ≥
11
16 and

Sidorenko later [Sid95] conjectured that this is in fact an equality. Sidorenko
showed [Sid82] that π(K45) ≤ 0.749 and for over 20 years this was the best bound
known. Recently Lu and Zhao [LZ] found a new bound for π(Krr+1) which,
among other things, improves Sidorenko’s upper bound to π(K45) ≤ 0.744.
In [dCKRM91] DeCaen et al. determined ex(K45, n) for n ≤ 10 and also

found the exact number of non-isomorphic Turan graphs for n = 9, 10. In this
paper we report on a large scale computer search for extremal graphs for K45,
i.e. K45-free hypergraphs with ex(K

4
5, n) edges. We have constructed all non-

isomorphic extremal graphs for n ≤ 16 and found an upper bound on ex(K45, 17).
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Using the new values of ex(K45, n) we find an improved upper bound of

π(K45) ≤
1753

2380
= 0.73655 . . . ,

and make some further notes on the structure of the extremal graphs.

2 Giraud’s construction

We will here give a brief description of Giraud’s hypergraph family, mentioned
in the introduction.
Let M be an n × n 0/1-matrix. We now define a hypergraph G(M) with

vertex set V = Vr ∪ Vc, where Vr is the set of rows from M and Vc the set of
columns. Given two rows a, b and two columns α, β we let {a, b, α, β} be an edge
of G(M) if the sum of the entries in the 2 × 2-submatrix defined by a, b, α, β
is odd. We also let a four-tuple {a, b, c, d} be an edge if either 1 or 3 of the
elements are rows.
In order to maximise the number of edges in G(M) we may use the matrix

M obtained by replacing the −1:s in a Hadamard matrix by 0:s.

3 Constructing Extremal Graphs

The basic computational strategy we have used is to construct all non-isomorphic
K45-free graphs on n+1 vertices and k edges by adding a new vertex, and edges
incident to the new vertex, to the K45-free graphs on n vertices, and sufficiently
many edges.
More precisely we use the bounds given by following simple lemma

Lemma 3.1. If G1 is an K
4
5-free 4-graph on n vertices and m edges then there

exists an K45-free 4-graph G2 on n − 1 vertices and at least m −
⌊

4m
n

⌋

edges,
such that G2 = G1 \ v, for some v ∈ V (G1).

This lemma tells us both that the size of an extremal 4-graph on n + 1
vertices can be bounded in terms of ex(n,K45). Furthermore, if we have found
all K45-free 4-graphs on n vertices and e edges, for all m − ⌊4m/n⌋ ≤ e ≤ m,
then we can construct all K45-free 4-graphs on n+ 1 vertices and a given size m
as follows:

1. Let S be the set of all K45-free 4-graphs on n vertices and e edges, for all
m− ⌊4m/n⌋ ≤ e ≤ m.

2. Given a 4-graph G ∈ S let UG be the set of all K
4
5-free 4-graphs which

can be constructed from G by adding a new vertex v to V (G) and a set
of m− |E(G)| edges containing v.

3. Let U = ∪GUG and let S
′ be the set of non-isomorphic 4-graphs in U .

4. S′ is the set of all K45-free 4-graphs on n vertices and m edges.

That this simple procedure will produce all non-isomorphic K45-free 4-graphs on
n+ 1 vertices and m edges follows directly from Lemma 3.1.
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We found that if step 2 is done by a brute force combinatorial search this
procedure is too slow for large n. Instead we formulated the extension step
as an Integer programming problem which was then solved using the integer
programming solver included in GNU’s glpk-package [Mak]. Once an extension
of a 4-graph G had been found we added a new linear inequality which excludes
only that particular solution and the process was repeated until the new integer
program had no solutions.
Finally the isomorphism reduction in step 3 was done using Brendan McKay’s

graph automorphism program Nauty [McK81].

4 Results

Using the method described in the previous section we were able to find the
set of extremal 4-graphs for n ≤ 16. For n = 17 we could not find ex(n,K45)
but since none of the 4-graphs on 16 vertices could be extended to a 4-graph
on 1754 edges, or more, we could reduce the upper bound on ex(17,K45). The
number of extremal 4-graphs and their sizes are shown in Table 4. These, and
other Turan hypergraphs, are available on the web [Mar], as are the equivalent
covering designs.

n size bound opt-0 opt-1 opt-2 opt-3 opt-4
6 12 12 1 3
7 28 28 1 1
8 56 56 1 1 5 48
9 96 100 3 51 2205
10 160 160 1 3 94 3240 123275
11 246 251 3 128 10322
12 369 369 3 35 2960 305900
13 530 533 1 22 3223
14 742 742 1 7 945 204202
15 1008 1011 1 5
16 1344 1344 1 2 97
17 ≤1753 1757

Figure 1: Near extremal 4-graphs for K45. The columns are as follows: size:
the number of edges in the extremal 4-graphs, bound: The upper bound on the
number of edges given by the extremal 4-graph with one vertex less, opt-a: The
number of non-isomorphic K45-free 4-graphs with a edges less than the extremal
4-graphs.

4.1 Density and Stability

Using the upper bound on ex(17,K45) and the fact that
ex(H,n)

(n
r
)
is a decreasing

sequence we find the following upper bound on the Turan density of K45.

Corollary 4.1. π(K45) ≤
1753

(174 )
= 0.7365546 . . .

For all n ≤ 16 ex(n,K45) is exactly that given by Giraud’s construction
[Gir90]. That this was true for n ≤ 10 was observed in [Sid95]. As the table
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shows this construction does in fact give the unique extremal 4-graph for 13 ≤
n ≤ 16. We would like to venture a strengthening of Sidorenko’s conjecture
about the asymptotic optimality of Giraud’s construction.

Conjecture 4.2. For n ≥ 12 the only K45-free hypergraphs on ex(n,K
4
5) edges

are those given by the construction from [Gir90].

An inspection of the K45-free 4-graphs on ex(n,K
4
5) − 1 edges shows that

except for n = 9 and n = 12 all such hypergraphs are subgraphs of at least one
extremal 4-graph on the same number of vertices. For n = 9 there are 18, and
for n = 12 there are 2, additional 4-graphs of this size.
Examining the K45-free hypergraphs on ex(n,K

4
5)− 2 edges we find that for

n = 13 all but 6, and that for n = 14 and 16 all, are subgraphs of the unique
extremal 4-graph. In view of this we expect a stability version of Conjecture
4.2, analogous to Simonovits’s theorem [Sim68] to hold as well, showing that
the near-extremal hypergraphs are also close to Giraud’s construction.

4.2 The numbers of Turan graphs

Given that the extremal 4-graph is unique for n = 13 . . . 16 it might be tempting
to expect this to hold for all larger n as well. However if Giraud’s construction
is optimal this will not be the case.
Let us recall that two Hadamard matrices M1 and M2 are equivalent, de-

noted M1 ≃M2, if M2 can be obtained from M1 by a sequence of the following
operations

1. Permuting rows and/or columns.

2. Transposition.

3. changing the sign of all entries in a row/column.

Via operation 3 we may always bring a Hadamard matrix to its standard form,
i.e. with only positive entries in the first row and column. We will now show

Theorem 4.3. Given two Hadamard matrices M1 and M2 in standard form,
M1 ≃M2 if and only if G(M1) is isomorphic to G(M2)

Proof. Recall that the vertex set of G(M1) is partitioned into two independent
sets Vr and Vc. A row permutation of M1 is equivalent to a permutation of
Vr and a column permutation to one of Vc. Transposing M1 is equivalent to
interchanging Vr and Vc. Applying a sign change operation on M1 does not
affect G(M1).
It thus immediate that if M1 ≃M2 then G(M1) is isomorphic to G(M2).
However, for Hadamard matrices in standard form the mapping from M to

G(M) is a bijection. This can be seen by noting that the second row of the
matrix can be found by considering the possible edges using the first two rows
of M . The presence or not of the edge using the first two rows and columns
determines the sign of the only unknown matrix position in the underlying 2×2-
submatrix, and once that is found the other positions in that row can be found
in the same way, and the the remaining rows.
Thus an isomorphism between G(M1) and G(M2) will also define an equi-

valence between G1 and G2.
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For small orders there exist only one Hadamard matrix of each order, see
e.g. chapter 7 of [HSS99], and thus Giraud’s construction give rise to a unique
4-graph. However, at order 16 there are 5 non-equivalent Hadamard matrices,
and it is possible to construct sequences of Hadamard matrices, of certain orders,
with more than one matrix per order. So if Sidorenko’s conjecture is true the
extremal 4-graph will not be unique for infinitely many n ≥ 32.
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