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Abstract. We first prove that for any fixed k a cubic graph with
few short cycles contains a Kk-minor. This is a direct generalisation
of a result on girth by Thomassen. We then use this theorem to
show that for any fixed k a random cubic graph contains a Kk-minor
asymptotically almost surely.

1. Introduction

During the last 30 years minors has been one of the most active topics in
graph theory. Much of this interest has stemmed from the result by Kruskal
[7] saying that the trees are well quasi ordered under the ordering induced
by the relation “H is a minor of G” and its culmination(?) with the cor-
responding result, the “Minor Theorem”, for general graphs by Robertson
and Seymour [10].
Of course this was not the first use of minor in graph theory. The best

known early use of minors is of course Kuratowski’s characterisation of
planar graphs [8]. After this comes the now classic conjecture by Hadwiger
[4],

Conjecture 1.1 (Hadwiger’s Conjecture). If a graph G has chromatic
number k then G has a Kk-minor.

As part of both the minor theorem and the attempts to understand Hadwi-
ger’s conjecture one has been interested in other conditions which implies
that a graph has some graph H as a minor, and especially the case when
H is a complete graph. One could say that the first such conditions are the
results of Turán [14], and Erdős and Stone [2], showing that a high enough
average degree implies the existence of both a complete graph and a gen-
eral graph H as a subgraph. However for minors rather that subgraphs
Mader [9] showed that 8k log k edges suffice to get a Kk-minor, this was
later refined to ck

√
log k by Kostochka [6], and independently by Thoma-

son [11] who later also determined the constant c [12]. At the same time
as Mader proved his result Wagner [15] found a condition closer to that
in Hadwiger’s conjecture, namely that a chromatic number of at least 2k

gives a Kk-minor. Finally, and closer to what will be done in the current
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paper, Thomassen [13] studied the effect of girth on minors and found that
for graphs with minimum degree 3 a high enough girth will also force a
Kk-minor.
Turning to random graphs instead Bollobas, Catlin and Erdős found that

in random graphs from G(n, p), for a suitable p, the largest k for which one
expects to find a Kk-minor is bounded by

n

(
√
logn)+4

≤ k ≤ n

(
√
logn)−1

.

Together with the results on colouring by Grimmet and McDiarmid [3] this
shows that for a random graph one expects Hadwiger’s conjecture to hold.
In the current paper we focus on random cubic graphs. We prove a

generalisation of Thomassen’s theorem on girth and then use it together
with the results of Bollobas and Wormald to prove that for any given k
a large enough cubic graph G contains a Kk-minor with high probability.
We also give conjecture regarding how large k can be as a function of the
order of G.

2. Results

First some necessary definitions.

Definition 2.1. We let Gn,d denote the probability space of all d-regular
simple graphs on n vertices equipped with the uniform probability measure.

Definition 2.2. We say that a graph in Gn,d has a given property asymp-
totically almost surely (a.a.s) if the probability that a graph from Gn,d has
the property tends to 1 as n→∞.
We can now state our first theorem.

Theorem 2.3. Given integers nc and k there exist an N0 = N0(nc, k)
such that every cubic graph G with at most nc cycles of length shorter than

g = 2k− 3 and |G| ≥ N0 has a minor of average degree greater than k6 − 1.
This iss a direct generalisation of a theorem of Thomassen, concerning

graphs with given girth [13]. The proof below follows Thomassen’s proof
closely, adding the part necessary to give a lower bound of the order of the
minor.

Proof. We first assume that G is connected. Let n = |G|. Now consider
a partition A = (A1, A2, . . . , Am) of the vertices of G into connected sub-
graphs with |Ai| ≥ k − 2. Such a partition exists for m = 1 and so we can
consider a partition maximising m.
First of all we can draw the conclusion that |Ai| < 3(k − 2). If not

we could just split Ai into two smaller connected components, thereby
violating the maximality of m. That Ai can be split in this way follows
from the lemma below by considering a spanning tree.
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Next let Ag1, A
g
2, . . . , A

g
p be the Ai’s which do not contain vertices be-

longing to cycles of length less than 2k − 3, and let Ab1, Ab2, . . . , Abl be the
remaining Ai’s. Clearly l < gnc.
We will next show that G(Agi ) is a tree. Let Ti be a spanning tree

of G(Ai) and assume that Ti 6= G(Ai). Then there must be an edge in
E(G(Ai)) \E(Ti) such that Ti∪ e contains a cycle of length at least 2k−3.
Thus we can find another edge e′ in Ti such that Ti \e′ has two components
of cardinality at least k− 2, thus violating the maximality of m once more.
Third we show that no two trees Ti Tj , corresponding to some A

g
i and A

g
j ,

are connected by more than two edges. Assume that there are three edges
e1, e2, e3 connecting Ti and Tj . Then we can find two vertices u ∈ Ti and
v ∈ Tj such that there are three internally vertex disjoint paths P1, P2, P3
in Ti ∪ Tj ∪ e1 ∪ e2,∪e3, each with endpoints u and v. Each pair of paths
form a cycle of length at least 2k−3, if not we would be in an Abj , and so at
least two of the paths, say P1 and P2, must have length at least k−1. Now
let P ′i ⊂ Pi, i = 1, 2, be two subpaths of length k − 3 using only internal
vertices of the Pi. Put P

′
3 = (P1 ∪ P2 ∪ P3) \ (P ′1 ∪ P ′2) and C = P1 ∪ P3.

Now P ′3 is connected and we find that

|P ′3| ≥ |C \ P ′1| ≥ g − (k − 2) = k − 1.

Thus both P ′1, P
′
2 and P

′
3 are connected sets with more than k− 2 vertices.

Now by redistributing the remaining vertices, if any, of Ti ∪ Tj we have
found a partition violating the maximality of m again.
Now we form a new graph G∗ by contracting each Ai to a vertex and

removing multiple edges in order to get a simple graph. Since each Agi is a

tree the vertex in G∗ corresponding to Agi will have degree at least
k
2 after

reducing double edges.

Finally G∗ must have at least 12

(

n
3k−6 − l

)

k
2 edges and the average

degree is at least

((

n

3k − 6 − l
)

k

2

)

1

l + p
≥
((

n

3k − 6 − l
)

k

2

)

1
n
k−2

≥ k
6
− k

2ncg

2n
.

Since k and nc are fixed this fraction will be greater than
k
6 − 1 for n

greater than some N0.
If G is not connected we find that unless some component has girth at

least g the number of components is bounded by nc. Thus we can apply the
previous reasoning to the component with smallest nc and we are done. �

As can be seen in the proof N0 is linear in nc if G is connected, quadratic
in nc if G is unconnected, and cubic in k.
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Lemma 2.4. Let T be a tree on 3t vertices, with maximum degree at most
3. Then the vertex set of T can be partitioned into two trees T1 and T2
such that |Ti| ≥ t.
Proof. We will make a proof by contradiction. Assume that T is a tree for
which the statement fails.
Given an edge e ∈ E(T ) we have that T \e consists of two trees T1,e and

T2,e and by assumption we have that one of then, say T1,e, has less than
t vertices. Let e = (u, v) be chosen such that the order of T1,e is maximal
and let u be the vertex in e which belongs to T2,e.
Now u must have degree 3, if not there would be an edge e′ = (u,w) such

that |T1,e′ | = |T1,e|+1, and T2,e′ must still have at least 3t−(t−1) = 2t+1
vertices, contradicting our choice of e.
Now the vertex u has degree 2 in T2,e an so T2,e \ u will consist of two

subtrees of T2,e, call them T1,u and T2,u. Since the order of T is 3t and the
order of T1,e is less than t we must have that at least one of T1,u and T2,u,
say T1,u, has order at least t. But then T1,e ∪ u ∪ T2,u will be larger than
T1,e contradicting our choice of e.

�

We now come to our probabilistic theorem.

Theorem 2.5. Let k be a fixed integer. A graph in Gn,3 has a Kk-minor
a.a.s.

Corollary 2.6. Given a graph H, a cubic graph has an H-minor a.a.s.

In order to prove this we need a result by Kostochka, and independently
Thomason, connecting complete minors and average degree.

Theorem 2.7 ([6] [11]). There exists a c such that for every k, every graph
of average degree d ≥ ck

√
log k has a Kk-minor.

The value of c has recently been determined closely by Thomason [12].
And as our final ingredient we need a result by Bollobas and Wormald

on the number of short cycles in random cubic graphs.

Theorem 2.8 ([16] [1]). Let Xi be the number of cycles of length i in a
graph in Gn,3. For a fixed k X3, X4, . . . , Xk are asymptotically independent
Poisson random variables with means λi =

2i

2i .

We now have all we need in order to prove the theorem.

Proof of theorem 2.5. Let k be given and choose r > ck
√
log k, where c

is the constant in 2.7. By theorem 2.8 the expected number of cycles of
length less than 6(2r − 3) is asymptotically a Poisson random variable
with expectation and variance λ ≤ 26(2r−3), just compute the sum of the
individual random variables.
By Chebyshew’s inequality we find that asymptotically a cubic graph

has more than λ+ bλ
1

2 cycles of length less than 6(2r− 3) with probability
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at most 4
b2
and so by the lemma lacks a minor of average degree r with

probability at most 4
b2
. Since the Xi’s are only asymptotically Poisson

distributed we include the factor 4 to allow for asymptotically vanishing
deviations from this distribution.
Using theorem 2.7 we find that asymptotically a cubic graph lacks a

Kk-minor with probability less than
4
b2
as well. Since this holds for all b it

also holds with probability one.
�

3. Some thoughts

Fist we can note that using contiguity type methods the theorem could be
extended from the cubic case to k-regular graphs in general.
The methods used here are quite crude and the probability for an H-

minor is much higher than shown here. A natural follow up to the present
result would of course be,

Problem 3.1. Given a uniformly distributed random d-regular graph on

n vertices, what is the largest k for which there is Kk-minor in G with

probability at least 12 .

I would further like to conjecture that the case of a random cubic graph
is not essentially worse than that of a cubic graph of high girth. Although
of course a graph can not have girth of order

√
n.

Conjecture 3.2. There exists a constant c > 0 such that if k = c
√
n then

the probability that a uniformly distributed cubic graph has a Kk-minor

tends to 1.

We may note that using standrard probabilistic methods it is not hard
to get quite close to the conjectured value of c, but pushing it to a pure
O (√n) does not seem to be easy.
Next let us consider corollary 2.6 for the case when H too is a cubic

graph. In this case an H-minor in a cubic graph G will correspond to a
subgraph of G isomorphic to a subdivision of H. Looking a the pairing
model for random regular graphs the probability for finding H itself as a
subgraph of G is O

(

n−k
)

, with n = |G|, 2k = |H|, see [5]. As we can
see this probability tends to zero quite quickly. However there are (3k)m

different ways to subdivide the edges of H, introducingm new vertices, and
we find that the expected number of such subgraphs of G is O(n−k(3k)m).
Thus for m < k log nlog 3k this expectation tends to zero and so an H-minor of

G will a.a.s contain at least k log nlog 3k vertices. This makes it all the more

remarkable that by the results of Robertson and Seymour we can find an
H-minor of G, should one exist, using an algorithm with running time
O(n3).
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A more philosophical note is that one should take some care in the use
of excluded minor results. As shown here one can never expect any large
proportion of all cubic graph to exclude some given minor. When the
property one is examining is completely characterised by the exclusion of
some set minors, as it is for planarity and the cycle cover property, this
is of course unavoidable, and so the property is in some sense rare. But
for cases where one expects a property to be common, or even hold for all
graphs, results of excluded minor type are an unlikely, although perhaps
not impossible, road to the desired goal.
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