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Abstract. This paper contain a collection of extremal graphs for
some questions on cycles in graphs. The graphs have been found by
exhaustive computer search.
I list the extremal graphs and values for the maximum and

minum numer of cycles in a graph, graphs without cycles of length 4
and 8 relating to a conjecture of Erdös and Gyarfas and the smallest
3-connected non-hamiltonian cubic graphs of class I.

1. Introduction

Many basic questions regarding the cycle structure of graphs in general,
and cubic graphs in particular, are very poorly understood. In the literat-
ure we find unsolved problems of all degree of sophistication, from the cycle
double cover conjecture to the hamiltonicity of various classes of graphs.
In this paper I list extremal graphs and values for some graph properties

related to cycles in graphs which I have happend to be working on during
the last few years. Next to more traditional pen and paper work I have
done some computational work which has been collected in this note.
The four different problems treated are briefly: the maximum number

of cycles, the minimum number of cycles, the existence of cycles of length
a power of 2, and finding nonhamiltonian 3-connected, 3-edge colourable
cubic graphs.

2. Graphs with many cycles

In [ES81] Entringer and Slater studied graphs with the maximum possible
number of cycles among all graphs on n vertices and m edges. More
specifically they defined ψ(G) to be the number of cycles in the graph G
and ψ(k) as the maximum number of cycles in a graph with n + k − 1
edges. Furthermore they showed that given any value of k there is a cubic
graph G on 2(k− 1) vertices such that ψ(G) = ψ(k), i.e. there is always a
reasonably small extremal graph for a given k.
Since k is the dimension of the cycle space of a graph on n + k − 1

edges we find that ψ(k) < 2k. Entringer and Slater proved that ψ(k) ≥
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2k−1 + k2 − 3k + 3 by calculating the number of cycles in the Möbius
wheels. Using an exhaustive computer search they found the value of ψ(k)
for k ≤ 8 and based on these values conjectured that ψ(k) ∼ 2k−1.
I have extended the computer search for cubic graphs on 2(k−1) vertices

for which ψ(G) = ψ(k). I have found the extremal graphs for k ≤ 11. For
12 ≤ k ≤ 22 I have computed lower bounds for ψ(k) by narrowing our
search to graphs with high girth. The results are given in Table 1.
In [ES81] it was conjectured that all cubic graphs which are extremal

for ψ would have as large girth as is possible for a cubic graph on 2(k−1).
This conjecture was disproved in [Gui96], however it still seems to be true
that the extremal graphs tend to have a girth which is close to the largest
possible one. Thus it is not unreasonable to expect the lower bounds for
ψ(k) given here to actually be the value of ψ(k).
The generalised Petersen graph GP(n,m), n ≥ 3, 1 ≤ m < n/2, is a

cubic graph with vertex-set {ui; i ∈ Zn} ∪ {vi; i ∈ Zn}, and edge-set

{uiui+1, uivi, vivi+m; i ∈ Zn}.

For k = 6 we have seen that GP (6 − 1, 2), the ordinary Petersen graph,
is extremal with respect to ψ(G), likewise for k = 5 the graph GP (5 −
1, 2), the cube, is extremal. Motivated by these to initial coincidences we
computed the number of cycles in all small generalised Petersen graphs
and found that for suitable m they come very close indeed to the extremal
value of ψ(n− 1), see Table 2. We thus make the following conjecture.

Conjecture 2.1. Let p(k) = maxm ψ(GP (k − 1,m)).

(1) p(k) = 2k−1 + f(k), where f(k) is a function not bounded by any
polynomial.

(2) ψ(k)− 2k−1 = O(p(k)− 2k−1).

From our data for small k one find a decent fit with f(k) = O(kln k).
However there is little else in support for a sharper conjecture.
That p(k) is greater than 2k−1 is immediate since GP (k − 1, 1) is the

family of ordinary cyclic ladders and for these we have that

ψ(GP (k − 1, 2)) ≥ 2k−1 + (k − 1)(k − 2) + 2.
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k ψ(k) ψ(k)/2k−1 girth Extremal graphs

3 7 1.75 3/3 K4, 3-cage
4 15 1.875 3/4 K3,3, 4-cage
5 29 1.813 3/4 The Möbius ladder.
6 57 1.7813 3/5 The Petersen graph, 5-cage
7 109 1.703 3/5 Figure 1
8 213 1.664 3/6 The Heawood graph, 6-cage
9 401 1.566 3/5 Figure 2
10 783 1.529 3/6 Figure 2
11 1484 1.449 3/5,6 Figure 3
12 2876 1.404 3/6 Figure 4

13 ≥ 5608 ≥1.369 6/7 The McGee graph, 7-cage
14 ≥ 10872 ≥1.327 7/7 Figure 4
15 ≥ 21192 ≥1.293 7/7 The Coxeter graph, snark
16 ≥ 41400 ≥1.263 7/8 The Tutte-Coxeter graph, 8-cage
17 ≥ 80211 ≥1.223 7/7 Figure 5
18 ≥ 157134 ≥1.198 8/8 Figure 5
19 ≥ 306373 ≥1.168 8/8 Figure 6
20 ≥ 600054 ≥1.144 8/8 Figure 6
21 ≥ 1182592 ≥1.127 8/8 Figure 7
22 ≥ 2324532 ≥1.108 8/8 Figure 7

Table 1. Values and bounds for ψ(k). In the column
labelled girt the first value is the minimum girth of the
graphs searched to give our bound and after the slash
mark we list the girths of the extremal graphs found.

Figure 1. Graphs maximising ψ(G) for k = 12.
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k ψ(k) p(k)

4 15 14
5 29 28
6 57 57
7 109 94
8 213 205
9 401 400
10 783 704
11 1484 1456
12 2876 2818
13 ≥ 5608 5442
14 ≥ 10872 10818
15 ≥ 21192 19767
16 ≥ 41400 40099
17 ≥ 80211 72656

Table 2. Values of p(k) for k ≤ 17 compared to our best
lower bounds for ψ(k)

Figure 2. Graphs maximising ψ(G) for k = 16, 18.

Figure 3. Graphs maximising ψ(G) for k = 20.
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Figure 4. Graphs giving our value and lower bound for
ψ(k) for k = 22, 26.

Figure 5. Graphs giving our lower bound for ψ(k) for
k = 32, 34.

Figure 6. Graphs giving our lower bound for ψ(k) for
k = 36, 38.

5



Figure 7. Graphs giving our lower bound for ψ(k) for
k = 40, 42.
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3. Graphs with few cycles

In [BCE86] Barefoot Clark and Entringer studied what is more or less to
opposite question of the previous section, namely how many cycles a graph
on n at least must have. Since trees by definition do not have any cycles we
must restrict our graph in order to get a meaningful question. Barefoot et
al defined fk(n) as the smallest number of cycles in any k-connected cubic
graph on n vertices.
Barefoot et al determined the exact value of f1(n) and found the family

of extremal graphs satisfying this bound, f1 turns out to be linear in n.
They also found the value f2(n), which is quadratic in n, an found the
corresponding extremal graphs.
For k = 3 fk(n) has not yet been determined. In [BCE86] it was shown

that f3(n) is bounded from above by n2
nc , c = log 8

log 9
, and it was conjectured

that f3(n) is larger than any polynomial. This conjecture was proved by

Aldred and Thomassen [AT97] who showed that 2n
0.17

< f3(n) for large
n. These bounds are to this date the best found for f3(n).
Obviously no family of extremal graphs for f3(n) has been found, but in

[BCE86] the extremal graphs for n ≤ 14 was found by comparing a simple
family of planar graphs with values of ψ(G) from a computer generated
table. The family Gn mentioned is constructed as follows. Let Gn = {K4}.
A graph G2 ∈ Gn+1 is constructed from a graph G1 in Gn by expanding a
vertex v, contained in as few cycles of G1 as possible, into a triangle. It
was also noted without proof that if G ∈ Gn then ψ(G) = Fn/2+5−n/2+4,
where Fn is the nth Fibonacci number.
We have verified and extended the search for extremal graphs for f3(n)

to all n ≤ 20 and we found that all the extremal graphs thus far belong
to Gn. As noted in [BCE86] this can not continue to hold for all n, the
Fibonacci number grow exponentially, and an interesting challenge is thus
to find the smallest n for such that f3(n) < Fn/2+5 − n/2 + 4.
The extremal graphs for n ≤ 20 are displayed in Figures 8 to 13.
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Figure 8. Graphs minimising ψ(G) for n = 8, 10.

Figure 9. Graphs minimising ψ(G) for n = 12.

Figure 10. Graphs minimising ψ(G) for n = 14.
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Figure 11. Graphs minimising ψ(G) for n = 16.

Figure 12. Graphs minimising ψ(G) for n = 18.
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Figure 13. Graphs minimising ψ(G) for n = 20.
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n

24 4
26 23
28 251

Table 3. The number of cubic graphs with no C4 and C8.

4. Graphs with few cycles of length 2k

In 1995 Erdös and Gyarfas made the following conjecture.

Conjecture 4.1. Every graph with minimum degree at least 3 contains a

cycle whose length is a power of 2.

Erdös offered $100 for a proof and $50 for a counterexample. Apart from
Shauger’s results on claw-free graphs [Sha98, DS01] there seems to be very
little published on this conjecture.
Assume that G is a, edge and vertex, minimal counterexample to this

conjecture and that u and v are two vertices of G. If d(u) ≥ 3 and
d(v) ≥ 3 then {u, v} can not be an edge; if it was then G \ {u, v} would
be a counterexample with fewer edges than G. Thus a counterexample
must consist of an independent set V1 of vertices of degree at least 4, and
a nonempty set V2 = V \ V1 of vertices of degree 3.
Using this observation Gordon Royle [Roy] used a modified version

of Brendan McKay’s graph generator makeg [McK] to generate graphs
without C4’s and the described degree structure. Royle generated all rel-
evant graphs on less than 16 vertices and found no counterexamples.
In order to extend this search further we choose to look at graphs with

V1 = ∅, i.e cubic graphs. We used Gunnar Brinkman’s cubic graph gener-
ator minibaum [Bri96] to generate all cubic graphs on less than 29 vertices
and a simple fortran program to check for the existence of cycles of length
4,8 and 16. No counterexamples to the conjecture was found. However on
24 vertices we found the smallest cubic graphs without cycles of lengths 4
and 8. These graphs are displayed in Fig. 14. We note that the lower right
of the four graphs can be constructed from K4 be repeatedly expanding
vertices into triangles, it is also the only planar graph among the four.
In Table 3 we display the number of cubic graphs on n vertices having

no cycles of length 4 or 8. From the distribution of short cycles in random
cubic graphs, see e.g. the nice survey in [Wor99], we find that for these
small n the number of graphs without any cycles of length 4 and 8 is much
larger than the asymptotic proportion of such graphs among the cubic
graphs.
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Figure 14. The cubic graphs on 24 which contains
neither a C4 nor a C8
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5. Nonhamiltonian cubic graphs of class I

The hamiltonicity of cubic graphs is a well investigated property. It is
of course easy to construct a nonhamiltonian 1-connected cubic graphs
and it is only slightly harder to find a 2-connected nonhamiltonian graph.
Among the 3-connected cubic graphs the smallest nonahmiltonian graph
is the well known Petersen-graph, and from it there is a number of ways
to construct families of larger nonhamiltonian graphs. Graphs constructed
in this way are typically of class II, i.e. they are not 3-edge-colourable.
Among cubic graphs of class I the planar graphs have received a lot of

attention, first in connection with the 4-colour theorem. The first non-
hamiltonian example was found by Tutte in [Tut46]. Later on several
examples of non-hamiltonian cubic graphs on 38 vertices were found by
Lederberg, Barnette, and Bosk. Holton and McKay proved that all 3-
connected planar cubic graphs on at most 36 vertices are hamiltonian,
thus proving the minimality of the examples on 38 vertices.
Here we have searched for 3-connected, non-planar, non-hamiltonian,

cubic graphs of class I. We used a fortran program to sieve for non-
hamiltonian graphs among all cubic graphs on n vertices and among those
we used Mathematica to check wether the found graphs were class I and
3-connected. The cubic graphs were generated using minibaum [Bri96].
All triangle free cubic graphs on at most 22 vertices were tested, the re-
striction to triangle free graphs coming from the fact that if we contract
a triangle in a cubic graph we preserve both the chromatic index and the
hamiltonicity of the graph.
In Figure 15 we show the smallest such graphs and in Figure 16 we show

all such graphs on 22 vertices. The first four graphs in Figure 16 can be
constructed from the graph in Figure 15, the fifth graph is the generalised
Petersen graph GP (11, 2).
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Figure 15. The 3-connected class-I nonhamiltonian cu-
bic graph on 20 vertices.

Figure 16
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