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Abstract

A large scale Monte Carlo simulation study of the Ising model for the simple cubic lattice was

recently performed by us. In this article we complement that study with the bcc, fcc and diamond

lattices. Both the canonical and microcanonical ensembles are employed. We give estimates of

the critical temperature and also other quantities in the critical region. An analysis of the critical

behaviour points to distinct high- and low-temperature exponents, especially for the specific heat,

as was obtained also for the simple cubic lattice, although the agreement is good between the

different lattices. The source of this discrepancy is briefly discussed.
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I. INTRODUCTION

The Ising model was formulated as a model for a uniaxial magnetic system and has

become one of the most studied models in theoretical physics. It was solved by Ernst Ising

in 1925 [1] in the one-dimensional case, though the solution contained no finite-temperature

phase transition. It took almost twenty years before Lars Onsager published the solution for

the (infinite) two-dimensional case without an applied field [2]. Being one of the very few

exactly solved models, it now serves as a proving ground for new theories, approximations,
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and numerical algorithms. Despite many attempts the three-dimensional model has not

been solved.

Since the 1960s it has become standard to assume that the scaling hypothesis holds for

the free energy of several statistical physics models, among them the Ising model. This

is not an unreasonable assumption since it actually is true for the very few cases where

there are exact solutions, such as the two-dimensional Ising model. The hypothesis leads

to the rather attractive consequence that the high- and low-temperature critical exponents

are equal, ie α = α′ and γ = γ′. With the advent of renormalization theory the scaling

hypothesis received an underlying mechanism, see [3, 4].

The Ising model has been studied using several theoretical approaches, such as high-

and low-temperature series expansions, Monte Carlo simulations, both infinite volume and

renormalization group methods, and perturbative field theoretical methods, see eg [5–11]. A

more extensive list of methods and references can be found in the exhaustive review article

by Pelissetto and Vicari [12]. The results of our calculations are compared throughout the

text to recent results obtained by some of these methods.

It is perhaps less well known that the model describes several physical systems, which

belong to the Ising universality class, besides uniaxial magnetic systems. These include

liquid-vapor transitions in simple fluids, binary mixtures of fluids, ionic fluids, and micellar

systems. Also in high-energy physics the three-dimensional Ising model is expected to be of

relevance. For more on these applications, again see [12].

In a recent review [13] the Ising model on the simple cubic lattice was studied by means of

Monte Carlo simulations data of unprecedented size. In this article we complement this by

a study of other three-dimensional lattices, namely the body-centred cubic lattice, the face-

centred cubic lattice and the diamond lattice. We have used a sampling scheme presented in

detail elsewhere [14] combined with the energy distribution reconstruction technique in [15].

We have estimated a great number of properties of the model in the critical region. The crit-

ical temperatures found in this study agree with earlier studies, possibly with the exception

of the diamond lattice, references are given in the text.

Both the canonical ensemble and the microanonical ensemble were used in the present

study. The microcanonical ensemble gives a considerably more detailed picture of the un-

derlying properties for the different lattices, but requires also high-resolution data. For

the diamond lattice it revealed a small but distinct extremum in the second derivative of
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the entropy clearly outside of the critical region. This corresponds exactly to a very small

minimum in the specific heat in the high-temperature region which we would have missed

had it not been for the microcanonical ensemble data. We are not aware of any physical

significance of this minimum.

By means of conventional analysis using log-log plots we find, in agreement with the

study for the simple cubic lattice [13], that the best fit to our data is a collection of distinct

high- and low-temperature exponents. A possible “cure” for this, as discussed in [13], is to

describe the singularities in terms of a Puiseux-series. There we found that a consequence of

this is that correction terms would hide the true asymptotically correct behaviour for lattice

sizes obtainable in a foreseeable future. This would in turn have serious implications for the

assumptions underlying everyday simulations of lattice systems in statistical mechanics. No

attempt to describe the singularities in terms of a Puiseux-series is performed in this paper.

The exponents obtained here agree although between the different lattices. The general

conclusions regarding finite-size behaviour made in [13] agree with the findings in this paper

as well. The reader which is only interested in the results may skip to Tables XIX and XX

in Section V.

II. NOTATION AND BASIC DEFINITIONS

The three types of lattices we have studied are the body-centred cubic (bcc), the face-

centred cubic (fcc) and the diamond (d) lattice. The bcc lattice is regular of degree 8 and

for linear order L it has L3/4 vertices and L3 edges. The fcc lattice is 12-regular and has

L3/2 vertices and 3L3 edges. The diamond lattice is 4-regular and has 2L3 vertices and

4L3 edges. We have used periodic boundary conditions for the bcc and fcc lattice while we

imposed helical boundary conditions on the diamond lattice, see chapter 13.1.3 of [16] for

details. The bcc and the diamond lattices are both bipartite whereas the fcc is not. Often

we will have reason to compare our findings to those in [13], a study of the simple cubic

(sc) lattice with periodic boundary conditions. Recall that this lattice is 6-regular with L3

vertices and 3L3 edges. We will denote the number of vertices by n and the number of edges

by m. Consequently the degree of the lattice is 2m/n.

The energy E of a state σ = (σ1, σ2, . . . , σn), with σi = ±1, is then defined as E(σ) =
∑

{i,j} σi σj, with the sum taken over all the edges {i, j}, and the magnetisation M is defined
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as M(σ) =
∑

i σi with the sum take over all the vertices. Often it is practical to use their

normalised forms U = E/m and µ = M/n, so that −1 ≤ U, µ ≤ 1. The number of

states σ having energy E is denoted a(E) while the number of states having energy E and

magnetisation M is denoted a(E,M).

There will be two classes of quantities; the combinatorial quantities from the microcanon-

ical esemble which depend on the energy U , and the physical quantities from the canonical

ensemble that depend on the coupling, or inverse temperature.

Regarding the definitions of the quantities and exponents we will be consistent with those

in [13].

We will briefly state the definitions of the relevant quantities but the details are found in

[13]. First the combinatorial quantities beginning with the entropy S, defined at U = E/m

as S(U) = log[a(E)]/n and the coupling defined as K(U) = −(n/m)∂S(U)/∂U . How to

obtain the coupling by sampling is described in detail in [14]. It is occasionally useful to

write ǫ = (U − Uc)/Uc.

The average magnetisation is µ(U) = 〈M〉/n and the variance χ(U) = Var(M)/n, while

correspondingly for the absolute magnetisation, µ̄(U) = 〈|M |〉/n and χ̄(U) = Var(|M |)/n.

We look at higher moments as well, denoting

φ(U) =
1

n

〈

(|M | − 〈|M |〉)3
〉

ψ(U) =
1

L3

(

〈

(|M | − 〈|M |〉)4
〉

− 3
〈

(|M | − 〈|M |〉)2
〉2

)

For the physical quantities we start with the partition function

Z(K,H) =
∑

σ

exp (K E(σ) +HM(σ))

for a coupling, or inverse temperature, K = J/kBT and external field H. Replacing the

magnetisations with their absolute values gives

Z(K,H) =
∑

σ

exp (K E(σ) +H |M(σ)|)

Of course, no one will be deceived when we write Z(K) instead of Z(K, 0), though we could

also write

Z(K) =
∑

E

a(E) exp(K E).
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Defining the standard quantities is now easy. The free energy is then F(K) =

(1/n) logZ(K), the internal energy U(K) = (n/m) ∂F(K)/∂K = 〈E〉/m, the specific heat

C(K) = ∂U(K)/∂K = Var(E)/m and the entropy S(K) = F(K) − (m/n)K U(K). Note

that our definitions of internal energy and specific heat differ by a factor n/m from those

usually found in the literature. The coupling (and external field) dependent versions of the

magnetisation, susceptibility and higher moments are defined as above, though at a fixed

coupling, instead as energy. Equivalently, we let µ̄(K), χ̄(K), φ(K) and ψ(K) denote re-

spectively the first, second, third and fourth derivative of (1/n) logZ(K,H) with respect to

H evaluated at H = 0.

Occasionally we may need to subscript the various quantities with the linear size, as

in C16 to denote the specific heat for linear size 16. Using these definitions we expect

that in the thermodynamical limit, as L → ∞, we will have for example U(K(U)) → U ,

S(K(U)) → S(U) and µ̄(K(U)) → µ̄(U). That is, the function K(U) translates between

the microcanonical and the canonical ensemble, the reader should consult [15] or [14] for

more on this. Sometimes we may use the notation t = (K −Kc)/Kc.

The study was conducted by Monte Carlo sampling on many different lattice sizes, not

entirely consistently chosen, and occasionally on exact data. For the bcc we have used data

collected on lattices of linear order L = 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192 and 256,

where the data for L = 4, 6 are based upon exact calculations. For fcc we used linear orders

L = 4, 6, 8, 12, 16, 24, 32, 64, 128 and 256, where L = 4 was done exactly. For the diamond

lattice we have L = 4, 6, 8, 12, 16, 24, 32, 48, 64, 96 and 128 and no exact data. The sc

study [13] was done for L = 4, 6, 8, 12, 16, 32, 64, 128, 256 and 512 where the data for

L = 4 are exact.

III. PHYSICAL QUANTITIES

A. Plots

Let us begin by showing some plots of a few physical quantities near the critical coupling.

In Figure 1 we show the specific heat C(K) for the bcc and fcc lattice while Figure 2 shows

it for the sc and d lattice. Next the magnetisation µ̄(K) is shown in Figures 3 and 4. The

logarithm of the susceptibility χ̄(K) is shown in Figures 5 and 6. These plots seem to suggest
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a rather similar behaviour near Kc and we are soon going to see just how similar when we

estimate the critical exponents.

However, the diamond lattice shows a curious local minimum in the specific heat in the

high-temperature region. This minimum corresponds to a maximum in the function ∂K/∂U

which we will study closer in Section IV A. For now we will just state that from a series

expansion we receive the location K ≈ 0.128078 and the value 0.991791.
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FIG. 1: Specific heat C vs coupling K for the bcc (left) and fcc (right) lattice near Kc, −0.05 ≤

t ≤ 0.05. Lattice sizes are respectively L = 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256 and L =

4, 6, 8, 12, 16, 24, 32, 64, 128, 256.
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FIG. 2: Specific heat C vs coupling K for the sc (left) and d (right) lattice near Kc,

−0.05 ≤ t ≤ 0.05. Lattice sizes are respectively L = 4, 6, 8, 12, 16, 32, 64, 128, 256, 512 and

L = 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128. Inset shows L = 8, 12, 16, 24 and a curve (red) obtained

from high-temperature series expansion.
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FIG. 3: Magnetisation µ̄ vs coupling K for the bcc (left) and fcc (right) lattice near Kc, −0.5 ≤

t ≤ 0.5. Same lattice sizes as in Figure 1.
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FIG. 4: Magnetisation µ̄ vs couplingK for the sc (left) and d (right) lattice nearKc, −0.5 ≤ t ≤ 0.5.

Same lattice sizes as in Figure 2.
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FIG. 5: Logarithmic susceptibility log χ̄ vs coupling K for the bcc (left) and fcc (right) lattice near

Kc, −0.05 ≤ t ≤ 0.05. Lattice sizes are respectively L = 12, 16, 24, 32, 48, 64, 96, 128, 192, 256 and

L = 8, 12, 16, 24, 32, 64, 128, 256.
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FIG. 6: Logarithmic susceptibility log χ̄ vs coupling K for the sc (left) and d (right) lattice near

Kc, −0.05 ≤ t ≤ 0.05. Lattice sizes are respectively L = 6, 8, 12, 16, 32, 64, 128, 256, 512 and

L = 6, 8, 12, 16, 24, 32, 48, 64, 96, 128.

B. Critical points

First we are going to locate a number of critical points with respect to some quantity and

also the values at these points. Since the critical points are assumed to converge towards

an asymptotic critical point we will of course estimate that point. The growth rate of the

values are also estimated.

The critical points are denoted K∗
1 , . . . , K

∗
15 and are the locations of, respectively, the

maximum specific heat C, the maximum and minimum of ∂C/∂K, the maximum and mini-

mum of ∂2C/∂K2, the maximum of ∂µ̄/∂K, ∂ log µ̄/∂K, ∂ logχ/∂K and χ̄, the maximum

and minimum of φ, the minimum and maximum of ψ, the maximum of ∂Q/∂K and the

crossing point QL = QL/2. Here QL is the Binder cumulant Q = 1−〈M4〉/3〈M2〉2 for linear

size L.

1. The bcc lattice

Beginning with the bcc lattice we list in Table I the critical points K∗
1 , . . . , K

∗
5 , related to

the second, third and fourth cumulants with respect to the energy. The points for L = 8, 12

in the fourth column are missing since they lie at a too extreme temperature where our

method of reconstructing the energy distribution breaks down. Recall that we could easily

obtain them for L = 4, 6 since they are based upon exact data. We list the pointsK∗
6 , . . . , K

∗
10

in Table II and K∗
11, . . . , K

∗
15 in Table III. Some points are missing though since they are
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outside the range of the collected data.

The asymptotic values in the tables were obtained by fitting points to the formula c0 +

c1 L
−λ, where c0 then would be close to Kc. For the bcc lattice data we fitted the five, six

and seven largest cubes (L ≥ 32, L ≥ 48, L ≥ 64, respectively) to this formula. This gave

very convincing fitted curves in all cases except for K∗
2 and K∗

15 which show some irregular

behaviour. For K∗
15 (only!) we used instead L ≥ 24, L ≥ 32, L ≥ 48. Thus each sequence of

K∗ provides us with three measurements, or samplings, of Kc and the medians of these are

listed as the asymptotic value. The half-differences between the maxima and the minima

can be used as error estimates and are also listed on the last line of the Tables. For K∗
1 , for

example, the table should then be read as Kc = 0.157368(2) = 0.157368 ± 0.000002. We

will work a little more on this in a moment. In Figure 7 these points and the fitted curves

are shown.

We could of course have added a correction term and fitted a formula of the form c0 +

c1 L
−λ1 + c2 L

−λ2 to a larger selection of points. This often works very well but the formula

can also be rather sensitive as to which points are included in the fit. Note also that when it

does work well the resulting c0 is extremely close to that obtained with the simpler formula

for a smaller data set. The benefits of the extra correction term does not seem to add any

precision to our estimates of Kc. Thus it seemed wiser to keep it simple.

Looking at the 15 sequences of data we note that some of them are increasing toward

some asymptotic value of Kc while others are decreasing. However, some sequences, such

as K∗
9 , begins by increasing for L ≤ 16, before turning into a decreasing one. Nevertheless,

they all show their true colours for big enough L. We can use these sequences to obtain

upper and lower bounds of Kc. Thus, we take the value at L = 256 for the decreasing

sequences as an upper bound, and the value at L = 256 for the increasing sequences as a

lower bound. Due to some irregularities in the data we have reason to be slightly suspicious

of K∗
2 and K∗

15 so we will exclude them from this affair. The sequences for K∗
7 and K∗

9 gives

us the lower and upper bound respectively

0.157370 ≤ Kc ≤ 0.157382

The lower bound is very close to the asymptotic estimates but the upper bound is not

very impressive. To improve on this interval we use the asymptotic values as estimates of

Kc. After removing the blemished 2nd and 15th sequence, the data set then consists of 13
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L K∗
1 K∗

2 K∗
3 K∗

4 K∗
5

4 0.159462 0.121942 0.197489 0.094288 0.159440

6 0.166310 0.146143 0.185724 0.131927 0.165111

8 0.165277 0.152340 0.143435 0.164056

12 0.162836 0.155756 0.151106 0.161624

16 0.161213 0.156632 0.164752 0.153697 0.160267

24 0.159583 0.157114 0.161332 0.155577 0.158981

32 0.158834 0.157249 0.159908 0.156277 0.158421

48 0.158169 0.157322 0.158715 0.156811 0.157932

64 0.157886 0.157346 0.158228 0.157022 0.157729

96 0.157648 0.157366 0.157819 0.157196 0.157566

128 0.157551 0.157371 0.157663 0.157263 0.157499

192 0.157464 0.157372 0.157520 0.157315 0.157437

256 0.157433 0.157372 0.157470 0.157335 0.157416

∞ 0.157368 0.157374 0.157372 0.157370 0.157374

σ (2) (2) (3) (4) (4)

TABLE I: Critical points for bcc; location of, respectively, maximum C, maximum and minimum

∂C/∂K, maximum and minimum ∂2C/∂K2.

points with the minimum 0.157368 and maximum 0.157374. Unfortunately, the minimum

falls outside the previously stated interval. However, the median (and mean) of the data

set is 0.157371 and taking the 25% and 75% quartile of the data set as lower and upper

bounds of Kc we get Kc = 0.157371(1) which will be our final estimate of Kc. In short,

after excluding the bad, or at least suspicious, sequences, we take the median of the medians

of the asymptotic estimates. Our estimated Kc compares well with other recent estimates,

such as [11] who gave Kc = 0.1573725(6), and [17] who gave Kc = 0.157374(3), both of

which intersect our estimate.

We move on to the other critical constants Uc, Fc and Sc. In [13] it proved beneficial to

determine these constants by fitting a scaling formula such as above to UL(Kc). Choosing

different values of K from the interval for Kc above, fitting only on the six largest lattices
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L K∗
6 K∗

7 K∗
8 K∗

9 K∗
10

4 0.151789 0.128293 0.121496 0.141834 0.0890632

6 0.160875 0.148075 0.145073 0.154490 0.125303

8 0.161326 0.153108 0.151422 0.156919 0.138106

12 0.160299 0.155899 0.155123 0.157770 0.147784

16 0.159454 0.156649 0.156189 0.157796 0.151450

24 0.158571 0.157088 0.156861 0.157673 0.154333

32 0.158164 0.157222 0.157082 0.157587 0.155469

48 0.157801 0.157304 0.157233 0.157494 0.156378

64 0.157648 0.157334 0.157289 0.157453 0.156748

96 0.157523 0.157358 0.157335 0.157420 0.157049

128 0.157470 0.157364 0.157350 0.157404 0.157167

192 0.157423 0.157369 0.157360 0.157390 0.157268

256 0.157406 0.157370 0.157364 0.157382 0.157305

∞ 0.157371 0.157372 0.157371 0.157368 0.157372

σ (2) (2) (2) (4) (2)

TABLE II: Critical points for bcc; location of the maximum of, respectively, ∂µ̄/∂K, ∂ log µ̄/∂K,

∂ logχ/∂K, χ̄ and φ.

(L ≥ 48), we note that the critical energy is Uc = 0.27261(4). The same approach for the

free energy brings us Fc = 0.754006(1) and the critical entropy is then Sc = Fc − 4Kc Uc =

0.58240(3). Unfortunately, only the somewhat dated [18] (see detailed references therein)

seem to collect these figures, and from it we extract Uc = 0.2732(2) and S = 0.58203(10).

Considering how dated these figures are they compare fairly well to our data.

2. The fcc lattice

We will now simply repeat the above for the fcc lattice. The Tables IV, V and VI show

the critical points with respect to each quantity for each linear order for the fcc lattice.

Again we use different data sets to obtain an estimate of Kc with respect to each quantity.

We have used the four, five and six largest lattices when determining the asymptotic values.
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L K∗
11 K∗

12 K∗
13 K∗

14 K∗
15

4 0.175840 0.136235 0.196968 0.121253

6 0.170924 0.150271 0.181043 0.143192

8 0.166860 0.153896 0.149718 0.162289

12 0.162737 0.156019 0.153959 0.158721

16 0.160872 0.156646 0.162773 0.155380 0.157945

24 0.159256 0.157051 0.160236 0.156405 0.157542

32 0.158581 0.157188 0.159196 0.156782 0.157450

48 0.158012 0.157281 0.158334 0.157072 0.157393

64 0.157780 0.157318 0.157982 0.157187 0.157381

96 0.157590 0.157349 0.157696 0.157282 0.157381

128 0.157512 0.157358 0.157580 0.157313 0.157378

192 0.157447 0.157366 0.157480 0.157343 0.157374

256 0.157420 0.157367 0.157441 0.157352 0.157373

∞ 0.157374 0.157372 0.157371 0.157369 0.157374

σ (2) (2) (3) (3) (2)

TABLE III: Critical points for bcc; location of, respectively, the minimum φ, the minimum and

maximum ψ, the maximum ∂Q/∂K and the crossing point where QL = QL/2.

This deviates a little from the bcc case of course. Note however, that the seven largest

lattices would span linear orders from 12 to 256 and this probably strains our simple scaling

formula somewhat. Figure 8 shows these points versus 1/L together with the fitted curves.

The curves fit very well to their designated data sets with the exception of K∗
15 which

shows a slightly irregular behaviour. We will therefore exclude it from the rest of this

discussion. We note that the sequence that provides us with the best lower bound is K∗
2 and

the best upper bound is given by K∗
8 ; these say

0.102070 ≤ Kc ≤ 0.102075

The lower bound is a little suspicious, and indeed the last point for K∗
2 seems to lie ever so

slightly above the fitted curves. The error is probably just one step in the last digit though.

We continue, as we did for the bcc case and take the median of the medians, using the
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FIG. 7: The critical points K∗
1 , . . . ,K

∗
15 vs 1/L with fitted curves for the bcc lattice.

first and third quartiles to provide us with error estimates. This gives Kc = 0.102069(1).

Again this compares very well with recent estimates. In [17] we find the estimate Kc =

0.1020705(15) which we intersect.

We use the values from our estimated Kc-interval to get sequences of the type UL(Kc).

Fitting on the five largest lattices gives asymptotic values in the interval Uc = 0.24676(6).

Analogously for the free energy Fc = 0.741740(2) and thus the critical entropy is Sc =

Fc − 6Kc Uc = 0.59062(4). Again, from [18] we get Uc = 0.24742(5) and Sc = 0.59023(3).

These figures match our data acceptably well.

3. The diamond lattice

We move on to the diamond lattice. The critical points are listed in Tables VII, VIII and

IX. The quality of these sequences vary and we can probably not aspire to the relatively

high precision found in the case of bcc and fcc. Let us first simply note that sequences K∗
7 ,

K∗
8 , K∗

12, K
∗
14 and K∗

15 show some highly irregular behaviour, whereas K∗
1 , K∗

3 , K∗
4 , K∗

5 and
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L K∗
1 K∗

2 K∗
3 K∗

4 K∗
5

4 0.107845 0.0905415 0.124834 0.0782122 0.107248

6 0.106912 0.097993 0.0917084 0.106496

8 0.106446 0.100425 0.0964137 0.105555

12 0.104785 0.101524 0.107327 0.0994292 0.104127

16 0.103919 0.101814 0.105460 0.100490 0.103434

24 0.103108 0.101979 0.103876 0.101284 0.102815

32 0.102748 0.102025 0.103221 0.101586 0.102551

64 0.102305 0.102061 0.102456 0.101915 0.102234

128 0.102150 0.102068 0.102200 0.102019 0.102126

256 0.102097 0.102070 0.102113 0.102054 0.102090

∞ 0.102065 0.102070 0.102069 0.102068 0.102069

σ (6) (1) (2) (3) (3)

TABLE IV: Critical points for fcc; location of, respectively, maximum C, maximum and minimum

∂C/∂K, maximum and minimum ∂2C/∂K2.

K∗
6 seem well-behaved enough. The others have some irregularities but nothing too bad. It

is somewhat ironic though that K∗
8 and K∗

15, being so irregular, also have the lowest error

estimates. When calculating the different scaling fits we could not use the same data set

on all sequences. Adding a point sometimes wreck the scaling completely, while adding yet

another give a reasonable fit again. However, the asymptotic estimates are medians of three

different fits that all give acceptable parameters. In Figure 9 the points are shown with

fitted curves.

A lower bound on Kc is provided by the sequence K∗
4 , and the upper bound by K∗

2 since

these two seem well-behaved for this purpose. This gives

0.369678 ≤ Kc ≤ 0.369761

or Kc = 0.36972(4). Taking the median of the medians, after excluding sequences 7, 8, 12,

14 and 15 gives Kc = 0.369722. Since the data set now is rather small and also have a bit

of spread, merely taking quartiles to get error estimates is probably a little optimistic. We

get a somewhat larger, but safer, error estimate if we instead take the half-width of the set
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L K∗
6 K∗

7 K∗
8 K∗

9 K∗
10

4 0.103643 0.0927308 0.0899291 0.0985371 0.0737583

6 0.104514 0.0988013 0.0975338 0.101597 0.0882838

8 0.104396 0.100627 0.0999271 0.102282 0.0937174

12 0.103546 0.101545 0.101213 0.102368 0.0978437

16 0.103076 0.101802 0.101602 0.102311 0.0994393

24 0.102633 0.101961 0.101860 0.102222 0.100711

32 0.102437 0.102010 0.101948 0.102174 0.101217

64 0.102197 0.102055 0.102035 0.102109 0.101790

128 0.102113 0.102066 0.102059 0.102084 0.101978

256 0.102085 0.102069 0.102067 0.102075 0.102041

∞ 0.102068 0.102069 0.102068 0.102068 0.102069

σ (4) (1) (2) (4) (2)

TABLE V: Critical points for fcc; location of the maximum of, respectively, ∂µ̄/∂K, ∂ log µ̄/∂K,

∂ logχ/∂K, χ̄ and φ.

remaining after excluding the extreme points. This gives Kc = 0.369722(7) which misses the

remarkably precise estimate Kc = 0.36973980(9) of [19]. Another estimate is Kc = 0.3697(7)

from [20]. The critical internal energy is determined as before. Fitting on the six largest

lattices gave very convincing curves and resulted in Uc = 0.43161(9) and for the free energy

Fc = 0.833356(6) which gives the entropy Sc = Fc − 2Kc Uc = 0.51421(7). From [18] we

cite Kc = 0.369787(15), Uc = 0.437(3) and Sc = 0.5103(18).

C. Critical values

Next we wish to determine the growth of a number of quantities near Kc. Though all

the points in the Tables I to IX correspond to some critical value, not all of them are very

important. We will focus on a small selection only, such as the maximum specific heat,

susceptibility, Binder cumulant derivative, magnetisation derivative and the magnetisations

at this critical point.

For the bcc lattice these values are listed in Table X, for the fcc lattice in Table XI and
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L K∗
11 K∗

12 K∗
13 K∗

14 K∗
15

4 0.113202 0.0952823 0.122254 0.0888639

6 0.108848 0.0995775 0.0966066

8 0.106628 0.100819 0.109308 0.0990016 0.103398

12 0.104570 0.101552 0.105930 0.100644 0.102500

16 0.103683 0.101781 0.104531 0.101218 0.102235

24 0.102932 0.101937 0.103372 0.101648 0.102122

32 0.102621 0.101992 0.102898 0.101810 0.102095

64 0.102256 0.102047 0.102347 0.101987 0.102075

128 0.102132 0.102063 0.102163 0.102043 0.102071

256 0.102091 0.102069 0.102101 0.102061 0.102071

∞ 0.102069 0.102070 0.102070 0.102068 0.102071

σ (1) (1) (1) (2) (1)

TABLE VI: Critical points for fcc; location of, respectively, the minimum φ, the minimum and

maximum ψ, the maximum ∂Q/∂K and the crossing point where QL = QL/2.

for the diamond lattice in Table XII.

We intend to compare the three lattices and see if the corresponding growth rates have

any substantial differences. Indeed, only the simplest of scaling will be assumed, namely of

the type c0 + c1 L
λ, and it is only the exponent λ that we are interested in.

First, the specific heat maximum. Determining its growth rate turns out to be frustrat-

ingly hard to determine in a conclusive way. The result seems very dependent on which data

points are included in a fitting procedure. In [13] the growth rate was estimated, and indeed

conjectured, to be λ = 1/16. The procedure used there consisted in first determining the

c0 that gave the least varying slopes of a log-log fit for different data sets. Though useful

for getting a quick estimate, it is somewhat too dependent on which of the present data

points one uses, and it does not really help in comparing the lattices. Also, the data in [13]

were gathered on considerably larger lattices and with a better precision at that, and thus

depended less on the chosen data set. For the current lattices we can, simply put, choose

data sets for each lattice and obtain more or less the same growth rate. Depending on the
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FIG. 8: The critical points K∗
1 , . . . ,K

∗
15 vs 1/L with fitted curves for the fcc lattice.

chosen data set we can get growth rates between 0.04 and 0.12, a rather wide interval. Any

estimate would therefore rely too much on the method. However, we can at least test the

conjecture λ = 1/16 and see how well the lattices fit to such a growth rate when forced.

In Figure 10 we have forced λ = 1/16 upon each lattice and let Mathematica choose the

remaining parameters for L ≥ 12. The result is acceptable enough to fool the eye but of

course in no way conclusive.

We move on to the growth rate of the maximum susceptibility, which is considerably

easier to deal with. Here we may safely ignore the constant c0 and therefore estimate λ by

using the slope of linear fits to the logarithm of the data. We used data sets of the form

L ≥ Lmin and let Lmin = 12, 16, 24, 32 for all lattices. The resulting slopes ended up in the
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L K∗
1 K∗

2 K∗
3 K∗

4 K∗
5

4 0.389786 0.359725 0.338343 0.389288

6 0.384395 0.368236 0.399018 0.357310 0.382626

8 0.380750 0.370275 0.389627 0.363365 0.379217

12 0.375688 0.370076 0.379983 0.366493 0.374572

16 0.373881 0.370220 0.376574 0.367902 0.373117

24 0.371890 0.369965 0.373212 0.368777 0.371418

32 0.371147 0.369920 0.371968 0.369167 0.370838

48 0.370478 0.369829 0.370897 0.369434 0.370309

64 0.370248 0.369831 0.370518 0.369576 0.370143

96 0.369989 0.369771 0.370124 0.369640 0.369929

128 0.369900 0.369761 0.369987 0.369678 0.369861

∞ 0.369724 0.369717 0.369730 0.369733 0.369721

σ (25) (39) (34) (12) (34)

TABLE VII: Critical points for the diamond lattice; location of, respectively, maximum C, maxi-

mum and minimum ∂C/∂K, maximum and minimum ∂2C/∂K2.

following intervals

sc λ = 1.988 ± 0.007

bcc λ = 1.985 ± 0.006

fcc λ = 1.983 ± 0.004

d λ = 1.979 ± 0.007

(1)

where the sc estimate is quoted from [13]. The estimates intersect in λ = 1.984 ± 0.003. In

Figure 11 we show a log-log plot of the maxima for the bcc, fcc and d lattices together with

linear fits.

Next, the growth rate of the maximum derivative of the Binder cumulant. The slopes
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L K∗
6 K∗

7 K∗
8 K∗

9 K∗
10

4 0.382836 0.363154 0.358324 0.373538 0.328180

6 0.379415 0.369132 0.367016 0.373888 0.350283

8 0.377248 0.370687 0.369413 0.373634 0.358616

12 0.373580 0.370147 0.369546 0.371597 0.363769

16 0.372518 0.370299 0.369898 0.371284 0.366241

24 0.371102 0.369953 0.369766 0.370421 0.367821

32 0.370638 0.369909 0.369792 0.370205 0.368560

48 0.370202 0.369817 0.369757 0.369972 0.369108

64 0.370079 0.369833 0.369792 0.369939 0.369380

96 0.369894 0.369765 0.369745 0.369816 0.369526

128 0.369840 0.369760 0.369747 0.369792 0.369614

∞ 0.369722 0.369716 0.369765 0.369719 0.369736

σ (35) (43) (10) (40) (28)

TABLE VIII: Critical points for the diamond lattice; location of the maximum of, respectively,

∂µ̄/∂K, ∂ log µ̄/∂K, ∂ logχ/∂K, χ̄ and φ.

were

sc λ = 1.610 ± 0.014

bcc λ = 1.5844 ± 0.0007

fcc λ = 1.593 ± 0.002

d λ = 1.590 ± 0.002

(2)

and this time they do not intersect. The sc lattice seems to be the odd man here with a

rather wide error estimate. Figure 12 shows a log-log plot of the maxima together with

linear fits.
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L K∗
11 K∗

12 K∗
13 K∗

14 K∗
15

4 0.366322 0.356151

6 0.385862 0.369867 0.393300 0.364989

8 0.381052 0.370975 0.385669 0.367971 0.373156

12 0.375353 0.370161 0.377688 0.368651 0.370271

16 0.373682 0.370332 0.375186 0.369355 0.369964

24 0.371642 0.369931 0.372401 0.369434 0.369816

32 0.370974 0.369892 0.371453 0.369580 0.369693

48 0.370373 0.369807 0.370623 0.369644 0.369743

64 0.370198 0.369830 0.370361 0.369725 0.369793

96 0.369949 0.369760 0.370032 0.369703 0.369737

128 0.369876 0.369758 0.369928 0.369726 0.369724

∞ 0.369720 0.369687 0.36972 0.369735 0.369740

σ (32) (74) (34) (38) (8)

TABLE IX: Critical points for the diamond lattice; location of, respectively, the minimum φ, the

minimum and maximum ψ, the maximum ∂Q/∂K and the crossing point where QL = QL/2.

The maximum derivative of the magnetisation gave the slopes

sc λ = 1.096 ± 0.013

bcc λ = 1.095 ± 0.010

fcc λ = 1.091 ± 0.007

d λ = 1.092 ± 0.009

(3)

which intersect in the interval 1.092 ± 0.007. See Figure 13 for a log-log plot of the points.

Finally, the value of the magnetisation at the point that gives maximum derivative. The

slopes were

sc λ = −0.512 ± 0.012

bcc λ = −0.496 ± 0.006

fcc λ = −0.503 ± 0.005

d λ = −0.503 ± 0.006

(4)
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FIG. 9: The critical points K∗
1 , . . . ,K

∗
15 vs 1/L with fitted curves for the diamond lattice.

and they intersect in the interval −0.501± 0.001. Admittedly, it is very tempting to conjec-

ture that this should be −1/2. See Figure 14 for a log-log plot of the points.

D. Critical exponents

We intend here to give rough estimates of the critical exponents α, α′, β, γ, γ′ and δ. It

has become the order of the day to assume that α = α′ and γ = γ′ but one point of the

present study is to test this hypothesis. First we ask the reader to recall the definition of

the exponents. The growth of the specific heat near Kc is determined by α, α′

α = lim
K→K−

c

lim
L→∞

− log CL(K)

log |K −Kc|

α′ = lim
K→K+

c

lim
L→∞

− log CL(K)

log |K −Kc|

(5)
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L C χ̄ Q′ µ̄′ µ̄∗

4 7.103 1.303 5.089 5.750 0.6202

6 10.07 3.119 9.034 10.25 0.5661

8 12.41 5.743 13.98 15.09 0.5166

12 15.96 13.36 26.35 25.25 0.4439

16 18.44 24.07 41.48 35.68 0.3928

24 21.85 54.60 78.82 57.01 0.3264

32 24.27 97.21 124.5 78.85 0.2846

48 27.62 217.5 235.8 123.3 0.2332

64 30.08 385.1 373.0 169.0 0.2019

96 33.72 859.1 705.3 263.0 0.1648

128 36.43 1517. 1113. 358.5 0.1427

192 40.34 3381. 2119. 556.1 0.1157

256 43.12 5959. 3373. 751.2 0.1004

TABLE X: Extreme values for the bcc lattice; maximum of, respectively, C, χ̄, ∂Q/∂K, ∂µ̄/∂K

and the value that µ̄ takes at this point.

the susceptibility by γ, γ′

γ = lim
K→K−

c

lim
L→∞

− log χ̄L(K)

log |K −Kc|

γ′ = lim
K→K+

c

lim
L→∞

− log χ̄L(K)

log |K −Kc|

(6)

the magnetisation by β

β = lim
K→K+

c

lim
L→∞

log µ̄L(K)

log |K −Kc|
(7)

and at Kc the exponent δ determines how the magnetisation depends on the external field

1

δ
= lim

H→0+
lim

L→∞

log µL(Kc, H)

logH
(8)

The reader should note the order of the limits, that is, first we need data for the asymp-

totic lattice, then we let K approach Kc or H approach 0. Obviously we cannot do this so

we have settled for the same approach as used in [13]. This means that we study the slopes

of log-log plots of the quantities near, but not too near, Kc. We have stopped at a distance
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L C χ̄ Q′ µ̄′ µ̄∗

4 13.56 2.124 10.69 12.22 0.5898

6 17.94 4.992 19.67 20.93 0.5148

8 22.62 9.161 30.72 30.95 0.4720

12 28.09 21.04 58.17 50.71 0.3990

16 31.91 37.67 91.69 70.93 0.3506

24 37.20 84.97 174.3 112.3 0.2895

32 40.96 150.8 275.3 154.6 0.2516

64 50.22 596.4 827.1 329.9 0.1779

128 60.16 2341. 2491. 696.9 0.1249

256 71.35 9252. 7590. 1473. 0.08752

TABLE XI: Extreme values for the fcc lattice; maximum of, respectively, C, χ̄, ∂Q/∂K, ∂µ̄/∂K

and the value that µ̄ takes at this point.

L C χ̄ Q′ µ̄′ µ̄∗

4 4.602 7.079 5.860 6.795 0.5594

6 6.031 16.84 11.21 11.75 0.4886

8 7.052 31.41 17.65 16.92 0.4399

12 8.504 70.82 33.84 27.44 0.3666

16 9.482 132.3 53.00 38.32 0.3252

24 10.87 286.8 102.2 60.35 0.2645

32 11.87 512.2 161.5 83.18 0.2302

48 13.24 1134. 306.4 129.1 0.1875

64 14.35 2123. 479.6 178.3 0.1651

96 15.75 4427. 918.1 272.1 0.1317

128 16.92 7931. 1468. 374.4 0.1137

TABLE XII: Extreme values for the diamond lattice; maximum of, respectively, C, χ̄, ∂Q/∂K,

∂µ̄/∂K and the value that µ̄ takes at this point.
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FIG. 10: Maximum specific heat C vs L for the fcc, bcc and diamond lattice (downwards). The

fitted curves are of type c0 + c1 L
1/16.

from Kc corresponding to the coupling where at most 1% of the energy distribution spills

over Uc. This is shown in the plots below. First, in Figure 15 we see log CL(K) plotted

versus log |K −Kc| for K < Kc and K > Kc. Then, in Figure 16 we see log χ̄L(K) versus

log |K −Kc|. Finally, in the left panel of Figure 17 log µ̄L(K) versus log |K −Kc| is shown

and the right panel shows log µL(Kc, H) versus logH, so that the slope measures 1/δ. Also,

we have not been able to gather data for this purpose for lattices of all linear orders since

they require too much computer memory during sampling. Thus we only have these data

for L ≤ 48 in the bcc case and for L ≤ 24 in the fcc and diamond case. Note that we

use µ rather than µ̄ when measuring δ. In passing, the magnetisation µ has the properties

µL(K, 0) = 0 for all K and µL(K,H) = −µL(K,−H) whereas µ̄L(K,H) > 0 for all K,H

and finite L but limL→∞ µ̄L(K, 0) = 0 for K < Kc. We assume as an axiom that

lim
H→0+

lim
L→∞

µL(K,H) = lim
L→∞

µ̄L(K)

As the attentive reader surely recognises, the order of the limits on the left-hand side matters.
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FIG. 11: Logarithm of maximum susceptibility log χ̄ vs logL for the diamond, fcc and bcc lattice

(downwards).

As is clearly seen in these pictures is that the curves line up in a rather convincing way,

and the asymptotic slope of these curves is our desired exponent. Using only our eyes to fit

a straight line we obtained the following rough estimates

sc α = 0.22 ± 0.015

bcc α = 0.275 ± 0.025

fcc α = 0.27 ± 0.02

d α = 0.26 ± 0.02

(9)

Clearly, our current estimates are considerably higher than the one for sc given in [13].

However, as can be seen in Figure 15, the curves are slow to straighten up into a line and

this makes it particularly difficult to make a good estimate of this exponent. Again, our

present data probably suffers from relying on too small lattices due to the very slow growth

rate of the specific heat. However, the curves are better fitted with a straight line for α′
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FIG. 12: Logarithm of maximum derivative of the Binder cumulant log ∂Q/∂K vs logL for the

fcc, diamond and bcc lattice (downwards).

though, which we estimate to be

sc α′ = 0.164 ± 0.007

bcc α′ = 0.177 ± 0.012

fcc α′ = 0.17 ± 0.02

d α′ = 0.187 ± 0.013

(10)

These compare rather well except possibly for the diamond lattice. Though the intervals

do not intersect, their union is comparatively narrow, 0.175 ± 0.025. Traditional values of

α (and α′) are close to 0.11–0.12, see Table XX for comparison, though in [21] the authors

obtained the value α ≈ 0.18.
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FIG. 13: Logarithm of maximum derivative of the magnetisation log ∂µ̄/∂K vs logL for the fcc,

diamond and bcc lattice (downwards).

For γ we get the estimates

sc γ = 1.205 ± 0.025

bcc γ = 1.23 ± 0.015

fcc γ = 1.24 ± 0.02

d γ = 1.225 ± 0.025

(11)

which actually agrees in the interval 1.225 ± 0.005. For γ′ we get

sc γ′ = 1.265 ± 0.015

bcc γ′ = 1.285 ± 0.04

fcc γ′ = 1.26 ± 0.02

d γ′ = 1.32 ± 0.06

(12)

and they also intersect, this time in 1.27 ± 0.01. Typically γ (and γ′) are estimated to be

close to 1.24, see Table XX. This is actually right between our estimates of γ and γ′.
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FIG. 14: Logarithm of the magnetisation log µ̄∗ vs logL at the critical point for the bcc, fcc and

diamond lattice (downwards).
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FIG. 15: log C vs log |K −Kc| for K < Kc (left) and K > Kc (right) for the fcc, bcc and diamond

lattice (downwards) and all linear orders.

For the exponent β we estimated

sc β = 0.323 ± 0.008

bcc β = 0.325 ± 0.008

fcc β = 0.325 ± 0.002

d β = 0.33 ± 0.01

(13)
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FIG. 16: log χ̄ vs log |K −Kc| for K < Kc (left) and K > Kc (right) for the diamond, bcc and fcc

lattice (downwards) and all linear orders.
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FIG. 17: Left: log µ̄ vs log |K −Kc| for K > Kc for the fcc, bcc and diamond lattice (downwards)

and all linear orders. Right: logµ(Kc, H) vs logH for H > 0 for the diamond, bcc and fcc lattice

(downwards, though bcc and fcc are almost indistinguishable).

which intersect in 0.325 ± 0.002. This is actually very close to the traditional estimates of

β, such as those listed in Table XX. Finally, for the exponent δ we estimated

sc 1/δ = 0.205 ± 0.001

bcc 1/δ = 0.203 ± 0.004

fcc 1/δ = 0.200 ± 0.004

d 1/δ = 0.195 ± 0.004

(14)

The intervals for sc, bcc and fcc overlap in 0.204 (corresponding to δ ≈ 4.90), though

barely, but the diamond lattice remains faithful to its habit of being the odd one out.

However, this is more likely a result of that we cannot get very close to H = 0 for such small

lattice orders. The authors of [10] give δ = 4.7893(8) from which we then deviate in the first
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decimal, see also Table XX.

IV. COMBINATORIAL QUANTITIES

A. Plots

As the reader noticed in Figures 1 and 2 there was no clear difference between the different

lattices in the behaviour of the specific heat. The combinatorial quantities are a little more

discriminating however. The function K(U) does not have any interesting behaviour (in

short, K(0) = 0 and K(Uc) → Kc as L → ∞ and then K(U) → ∞ as U → ∞) so let us

first show the derivative ∂K/∂U for the different lattices. These are shown in Figures 18

and 19. Roughly, this quantity’s behaviour is the inverse of the specific heat’s; near Kc the

specific heat goes to infinity and ∂K/∂U goes to zero near Uc, this is all worked out in detail

in [14]. Though the different lattices have a clearly different behaviour on a global scale, in

this case for 0 ≤ U ≤ 2Uc, they do not differ particularly when observed very close to Uc,

as the inset pictures show for 0.9Uc ≤ U ≤ 1.1Uc.

However, the diamond lattice has a peculiar feature in that it displays a very small

local maximum, as the second inset picture clearly demonstrates. The series expansion,

obtained from [22], is included in the picture (red curve). From the expansion formula,

a 16 degree polynomial, we find the maximum located at U ≈ 0.127588 with the value

∂K/∂U ≈ 1.00828. Since the series expansion of ∂K/∂U corresponds to the inverse specific

heat of an infinite diamond lattice we can easily obtain the location and value of the minimum

in the specific heat. These were stated in Section III A.

We move on to the next derivative, ∂2K/∂U2, shown in Figures 20 and 21. The data

gets more noisy, but are fairly good where it matters, near Uc. We wish only to demonstrate

the general behaviour, so the figures only show plots for 12 ≤ L ≤ 64. It should be clear

however, that near Uc we first see a very sharp and quickly growing minimum followed by a

rather slower growing maximum.

Note that K(U) is an odd function for bipartite lattices. The fcc is not bipartite though.

This exception is clearly demonstrated by the second derivative for fcc, which is asymptoti-

cally −8 at U = 0, whereas the others are asymptotically 0. The second derivative for the

bcc lattice also demonstrates other interesting features, such as a local minimum at U ≈ 0.1
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FIG. 18: ∂K/∂U vs energy U , −1 ≤ ǫ ≤ 1 and inset −0.1 ≤ ǫ ≤ 0.1, for the bcc (left) and fcc

(right) lattice. Lattice sizes 16 ≤ L ≤ 256 and 16 ≤ L ≤ 256 respectively.
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FIG. 19: ∂K/∂U vs energy U , −1 ≤ ǫ ≤ 1 and inset −0.1 ≤ ǫ ≤ 0.1, for the sc (left) and d (right)

lattice. Lattice sizes 16 ≤ L ≤ 512 and 16 ≤ L ≤ 128 respectively. Second inset for d lattice shows

series expansion (red) and data for L = 8, 12, 16, 24.
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FIG. 20: ∂2K/∂U2 vs energy U , −1 ≤ ǫ ≤ 1 , for the bcc (left) and fcc (right) lattice. Lattice sizes

12 ≤ L ≤ 64 and 12 ≤ L ≤ 128 respectively.
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FIG. 21: ∂2K/∂U2 vs energy U , −1 ≤ ǫ ≤ 1, for the sc (left) and d (right) lattice. Lattice sizes

12 ≤ L ≤ 64.

followed by a local maximum at U ≈ 0.22; these are both absent from the sc lattice.

B. Critical points and values

In section III C we determined the growth rates for a number of quantities. Here we will

do the same for their energy dependent counterparts. In Tables XIII, XIV and XV we list a

few points and values of interest, related to the function K(U). Note that the derivative of

K(U) corresponds roughly to the incerse of the specific heat, see [14]. The minimum should

thus go to zero as L→ ∞. The location of the minimum should approach Uc and the value

of K(U∗) should approach Kc. It is far from clear however at what rate these points and

values scale, but we will at least plot their behaviour. These properties generally require

very large lattices for any scaling to be convincing. The finite size effects are at times rather

large. Thus, we had to leave out L = 4 in the bcc case. Also, the second minimum of

∂2K/∂U2 does not even exist for L ≤ 8.

In the left plot of Figure 22 it is shown how log(U∗ − Uc) behaves for the three lattices.

Needless to say, the linear fit is not entirely convincing since the lattices are too small.

Possibly, one might claim that the fcc lattice deviates a little from the other two. A similar

plot for the sc lattice would give a slightly steeper slope, but even for those considerably

larger lattices the linearity is not entirely satisfactory yet. Alas, this quantity requires huge

lattices. A similar statement holds for log(K(U∗) −Kc), see right plot of Figure 22.

The situation is largely the same for the minimum of ∂K/∂U . In the left picture of

Figure 23 we see the logarithm of the minimum for the three lattices. The fitted lines all
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L U∗ K ′ K −K ′′

6 0.27171 -0.06966 0.160988 8.231

8 0.30304 -0.006133 0.159465 5.109

12 0.30885 0.01912 0.158921 4.166

16 0.30442 0.02431 0.158579 4.013

24 0.29644 0.02624 0.158169 4.232

32 0.29108 0.02628 0.157945 4.658

48 0.28509 0.02568 0.157720 5.628

64 0.28134 0.02439 0.157598 6.508

96 0.27806 0.02278 0.157502 8.910

128 0.27656 0.02192 0.157461 10.39

192 0.27508 0.01969 0.157422 13.94

256 0.27426 0.01920 0.157404 18.40

TABLE XIII: Critical points and values for the bcc lattice; location U∗ of the minimum of ∂K/∂U ,

value of the minimum ∂K/∂U , value of K at U∗, minimum of ∂2K/∂U2.

L U∗ K ′ K −K ′′

6 0.27857 -0.006924 0.103651

8 0.28469 0.007812 0.103270

12 0.28050 0.01483 0.102917 2.636

16 0.27459 0.01636 0.102700 2.641

24 0.26661 0.01671 0.102471 2.917

32 0.26110 0.01649 0.102337 3.252

64 0.25342 0.01497 0.102174 4.844

128 0.24975 0.01328 0.102109 8.231

256 0.24819 0.01157 0.102086 13.99

TABLE XIV: Critical points and values for the fcc lattice; location U∗ of the minimum of ∂K/∂U ,

value of the minimum ∂K/∂U , value of K at U∗, minimum of ∂2K/∂U2.
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L U∗ K ′ K −K ′′

4 0.55647 0.1024 0.385308 4.713

6 0.50739 0.09248 0.378986 4.889

8 0.49425 0.09195 0.377049 5.295

12 0.46904 0.08259 0.373450 6.814

16 0.46225 0.08149 0.372573 7.862

24 0.44853 0.07157 0.371108 10.37

32 0.44373 0.06768 0.370649 12.41

48 0.43909 0.06210 0.370233 16.69

64 0.43754 0.05917 0.370112 20.19

96 0.43471 0.05361 0.369905 30.16

128 0.43378 0.05047 0.369845 40.93

TABLE XV: Critical points and values for the diamond lattice; location U∗ of the minimum of

∂K/∂U , value of the minimum ∂K/∂U , value of K at U∗, minimum of ∂2K/∂U2.
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FIG. 22: Left: log(U∗ − Uc) vs logL for the bcc, fcc and diamond lattice (downwards), where U∗

is the location of the minimum ∂K/∂U . Right: log(K(U∗) − Kc) vs logL for the diamond, bcc

and fcc lattice (downwards).

have a slope of roughly 0.2, the same as for sc in [13], though the bcc and fcc suffer heavily

from finite size effects. The diamond lattice does not seem to do that, however. This could

perhaps be an effect of its helical boundary conditions.

The right plot shows the logarithm of the absolute value of the minimum second derivative

of K, ie log |min ∂2K/∂U2| versus logL. As usual the finite size effects are pervasive, though
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FIG. 23: Left: log min ∂K/∂U vs logL for the diamond, bcc and fcc lattice (downwards). Right:

log |min ∂2K/∂U2| vs logL for the diamond, bcc and fcc lattice (downwards).

the diamond lattice seems to have a clearly greater slope, around 0.85 and the other two

around 0.70. Actually, in [13] we learned that the sc lattice also seems to prefer a value near

0.85, though the error margins were rather large. We will return to the ∂K/∂U -function a

little later.

We look instead at statistical moments of the magnetisation as a function of energy. Here

scaling is convincing enough for us to make actual estimates. First the data. In Table XVI,

XVII and XVIII some values of interest are listed.

Let us try to estimate the growth rates of these quantities as we did in Section III C. In

the left part of Figure 24 we see that the log-log plot of the maximum susceptibility gives a

very nice linear behaviour and we estimate the growth exponent as

sc λ = 2.06 ± 0.03

bcc λ = 2.09 ± 0.02

fcc λ = 2.08 ± 0.02

d λ = 2.05 ± 0.02

(15)

which intersect in λ = 2.07. As before the exponent for sc is taken from [13]. Next, the

maximum derivative of the Binder cumulant Q = 1 − 〈M4〉/3〈M2〉2. The right part of

Figure 24 shows a log-log plot of this and goes well with a linear fit. Slopes were

sc λ = 1.26 ± 0.02

bcc λ = 1.24 ± 0.02

fcc λ = 1.26 ± 0.03

d λ = 1.29 ± 0.01

(16)
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L χ̄ Q′ µ̄′ µ̄∗

6 0.7455 2.386 1.886 0.3350

8 1.687 2.541 2.050 0.3292

12 4.720 3.508 2.536 0.2968

16 9.346 4.646 3.020 0.2694

24 23.51 7.136 3.939 0.2316

32 44.43 9.900 4.821 0.2055

48 105.9 15.95 6.462 0.1721

64 195.3 22.68 8.103 0.1516

96 455.0 37.01 11.07 0.1258

128 828.0 53.94 13.75 0.1099

192 1915. 86.93 18.99 0.09170

256 3458. 130.8 24.10 0.07835

TABLE XVI: Critical values for the bcc lattice; maximum of χ̄(U), ∂Q/∂U , ∂µ̄/∂U and the value

that µ̄ takes at this point.

L χ̄ Q′ µ̄′ µ̄∗

6 1.390 2.341 1.929 0.3286

8 2.962 2.924 2.226 0.3081

12 7.947 4.315 2.839 0.2710

16 15.44 5.824 3.415 0.2443

24 38.18 9.190 4.532 0.2074

32 71.40 12.80 5.557 0.1837

64 309.1 29.65 9.373 0.1345

128 1297. 71.36 16.09 0.09695

256 5399. 178.2 28.34 0.06936

TABLE XVII: Critical values for the fcc lattice; maximum of χ̄(U), ∂Q/∂U , ∂µ̄/∂U and the value

that µ̄ takes at this point.
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L χ̄ Q′ µ̄′ µ̄∗

4 3.109 1.880 1.964 0.4638

6 7.776 2.883 2.687 0.3848

8 15.46 3.877 3.276 0.3491

12 35.76 6.486 4.432 0.2863

16 71.62 8.672 5.312 0.2626

24 156.1 15.21 7.500 0.2094

32 287.0 21.78 9.440 0.1834

48 651.8 36.72 13.06 0.1506

64 1287. 50.25 16.02 0.1369

96 2654. 91.41 22.85 0.1072

128 4823. 130.4 29.25 0.09321

TABLE XVIII: Critical values for the diamond lattice; maximum of χ̄(U), ∂Q/∂U , ∂µ̄/∂U and

the value that µ̄ takes at this point.
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FIG. 24: Left: log max χ̄(U) vs logL for the diamond, fcc and bcc lattice (downwards). Right:

log max ∂Q/∂U vs logL for the diamond, fcc and bcc lattice (downwards).

which unfortunately does not intersect since the result for the diamond lattice disagree

somewhat with the others. Still, the deviation is comparatively small.

The same holds for the maximum derivative of the magnetisation with respect to the
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FIG. 25: Left: log max ∂µ̄/∂U vs logL for the diamond, fcc and bcc lattice (downwards). Right:

log µ̄ at the maximum derivative vs logL for the bcc, fcc and diamond (barely distinguishable)

lattice (downwards).

energy, see left plot of Figure 25. The growth rate is

sc λ = 0.80 ± 0.025

bcc λ = 0.77 ± 0.01

fcc λ = 0.78 ± 0.02

d λ = 0.82 ± 0.02

(17)

which do not intersect, though they all intersect with the interval for the sc lattice. The

right plot of Figure 25 shows the magnetisation at this point where the maximum derivative

occurs. The slopes ended up as

sc λ = −0.47 ± 0.01

bcc λ = −0.46 ± 0.01

fcc λ = −0.47 ± 0.01

d λ = −0.48 ± 0.01

(18)

which all intersects in the common point λ = −0.47.

C. Critical exponents

There are of course combinatorial counterparts to the exponents in Section III D. As

we have mentioned earlier, the fact that the specific heat grows to infinity corresponds to

∂K/∂U going to zero. Thus, α and α′ correponds to the exponents a and a′ respectively,
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defined as

a = lim
U→U−

c

lim
L→∞

logK ′
L(U)

log |U − Uc|

a′ = lim
U→U+

c

lim
L→∞

logK ′
L(U)

log |U − Uc|

(19)

The exponents can be translated directly through some elementary algebra as

a =
α

1 − α
, a′ =

α′

1 − α′
(20)

Analogously for the exponents γ and γ′ there is a microcanonical version of these as well

g = lim
U→U−

c

lim
L→∞

− log χ̄L(U)

log |U − Uc|

g′ = lim
U→U+

c

lim
L→∞

− log χ̄L(U)

log |U − Uc|

(21)

and for these we have

g =
γ

1 − α
, g′ =

γ′

1 − α′
(22)

For the magnetisation we then have the exponent b defined as

b = lim
U→U+

c

lim
L→∞

log µ̄L(U)

log |U − Uc|
(23)

and it relates to β as

b =
β

1 − α′
(24)

It is not neccesarily easier to study the microcanonical exponents rather than their canonical

counterparts though. Especially exponent a seems difficult to estimate. In Figure 26 we

plot the quotient part of the definition of a and a′. Since we do not wish to go too close to

Uc we have stopped at the points where ∂2K/∂U2 has a minimum (U → U−
c ) or a maximum

(U → U+
c ). We would hope for them to have roughly the same slope but the diamond lattice

seems to prefer it otherwise. Since none of the curves show any sign of having achived a

linear behaviour yet we will refrain from guessing at a. However, the right part of the figure,

where the slope of the curves estimate a′, seems better suited to the notion of them being

equal. The estimates for the sc lattice were considerably lower, around 0.26 but were also

based on larger lattices, which means that we may go even closer to Uc. Strangely, the
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FIG. 26: log ∂K/∂U vs log |U −Uc| for U < Uc (left) and U > Uc (right) for the diamond, bcc and

fcc lattice (downwards) and all linear orders.

situation is somewhat better for a′. Here we obtained

sc a′ = 0.195 ± 0.015

bcc a′ = 0.21 ± 0.02

fcc a′ = 0.215 ± 0.01

d a′ = 0.22 ± 0.01

(25)

which agree on the point a′ = 0.21

For exponents g and g′ we turn to Figure 27. The curves for the three lattices become

very hard to distinguish, suggesting a small difference of the exponents. A more detailed

scrutiny gives

sc g = 1.55 ± 0.05

bcc g = 1.60 ± 0.15

fcc g = 1.58 ± 0.07

(26)

where we leave out the diamond, since no clear linear behaviour is seen yet (this is hidden

in the muddle of the figure though). These three agree on the interval g = 1.55 ± 0.05. For

g′ we received the estimates

sc g′ = 1.50 ± 0.05

bcc g′ = 1.45 ± 0.10

fcc g′ = 1.50 ± 0.10

d g′ = 1.68 ± 0.08

(27)

which do not intersect due to the diamond lattice (which has only begun to show a linear

behaviour). The other lattices intersect on the interval g′ = 1.50 ± 0.05 though.
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FIG. 27: log χ̄ vs log |U − Uc| for U < Uc (left) and U > Uc (right) for the diamond, bcc and fcc

lattice and all linear orders.
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FIG. 28: log µ̄ vs log |U −Uc| for U > Uc for the diamond, bcc and fcc lattice (downwards) and all

linear orders.

Our last exponent is b, see Figure 28, which shows a remarkably crisp behaviour for all

lattices. They seem to have very similar slopes and indeed we obtained

sc b = 0.376 ± 0.004

bcc b = 0.380 ± 0.005

fcc b = 0.382 ± 0.003

d b = 0.387 ± 0.007

(28)

which agree on the common point b = 0.380.

V. DISCUSSION

We have followed the method described in [14] and [15], just as in [13], to obtain sampled

data of the bcc, fcc and d lattice for comparison with the sc lattice. The data gave us
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Kc Uc Fc Sc

sc 0.2216546(3) 0.33021(1) 0.7778503(2) 0.55827(1)

bcc 0.157371(1) 0.27261(4) 0.754006(1) 0.58240(3)

fcc 0.102069(1) 0.24676(6) 0.741740(2) 0.59062(4)

d 0.369722(7) 0.43161(9) 0.833356(6) 0.51421(7)

TABLE XIX: Critical parameters for the different lattices. The values for sc are taken from [13].

estimates of the critical temperatures and other parameters, see Table XIX. Especially for

fcc and bcc they are of good quality, but somewhat less so for the d lattice. We have also

tried to estimate the high- and low-temperature exponents separately, both the canonical

ones (α, α′, etc) and the microcanonical ones (a, a′, etc), as well as the growth rate at local

maxima/minima of various quantities, eg the maximum specific heat and susceptibility.

The 3-dimensional lattices indeed show a similar behaviour near the critical temperature.

What seems to be the characteristic behaviour here is that the exponents between the lattices

are similar but also show different high- and low-temperature exponents, see Table XX.

Though the data suggest that α′, β, γ, γ′ and δ have the same value for different lattices,

at least up to the precision we can aspire to, there are also glaring problems with some

estimates, such as α. Here the value for sc is smaller than for the other lattices. With some

certainty this can be explained by the fact that the bcc, fcc and d lattices used here are

smaller than those used for the sc lattice, especially so for the d lattice. The exponents

can only be established with some accuracy when a clearly linear behaviour is shown in

the log-log plots and this is not the case for our lattices when it comes to α. Accurate

estimates may very well require quite large lattices, but the data lends no support to the

claim that α and α′ are equal. Exponents γ and γ′ are rather well-behaved though and the

data consistently tend to give us different values for each lattice, though fairly equal between

lattices. However, taking into account the sometimes rather wide error estimates we can no

longer be certain, since the intervals for γ and γ′ intersects for bcc and fcc, but the sc and

d lattice prefers to keep them apart. We have listed other estimates in Table XX obtained

through different methods. The values from [5] are obtained through merged Monte Carlo

results for ν and η from spin-1 Ising model and the φ4 theory. The listed exponents are then

obtained using the standard scaling relations. The exponents from [6] were obtained through
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α α′ β γ γ′ δ

φ4 [5] 0.1109(15) 0.3262(4) 1.2366(15) 4.791(9)

FT [6] 0.1091(24) 0.3257(5) 1.2403(8) 4.808(8)

HT [11] 0.1094(12) 0.3265(7) 1.2375(6) 4.79(1)

HT [10] 0.1096(5) 0.32653(10) 1.2373(2) 4.7893(8)

MCRG [8] 0.1073(36) 0.3274(9) 1.2378(27) 4.78(2)

LT [9] 0.112(11) 0.324(2) 1.24(1) 4.83(5)

sc 0.220(15) 0.164(7) 0.323(8) 1.205(25) 1.265(15) 4.88(3)

bcc 0.275(25) 0.177(12) 0.325(8) 1.230(15) 1.285(40) 4.9(1)

fcc 0.27(2) 0.17(2) 0.325(2) 1.24(2) 1.26(2) 5.0(1)

d 0.26(2) 0.187(13) 0.33(1) 1.225(25) 1.32(6) 5.1(1)

TABLE XX: Critical exponents for the different lattices. The values for sc are taken from [13].

field-theoretic methods and the standard scaling relations. For [11] and [10] the values were

found through high-temperature series expansions of the bcc and sc lattice respectively. In

[8] the Monte Carlo renormalization group was used. Finally, for [9] the authors used low-

temperature series expansion. In references [5, 6, 8–11] it was assumed that the scaling

hypothesis holds so that high- and low-temperature exponents are equal. Consequently,

none of these references measure α and α′ explicitly.

As we have seen throughout the paper the least-assumptions fit to our sampled data is

most easily reconciled with a picture where high- and low-temperature exponents differ, but

where any given exponent could very well have one and the same value for all the different

lattices under consideration. If this picture is correct we have a scenario for the critical regime

which is at the same time very familiar (ie the exponents agree between the lattices) and very

different (ie different high- and low-temperature exponents) from the working assumption

of statistical physics during the last 30 years. In the 1960’s scaling relations were considered

beautiful hypotheses, but with no motivating mechanism many considered them almost

too good to be true [23]. This all changed with the arrival of Wilson’s renormalisation

theory [4]. Suddenly there was a widely applicable theory which provided an explanation

for many scaling hypotheses and also made it plausible that there were in fact only a smaller

number of distinct types of critical behaviour, the so called universality classes. See [24] for
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an extensive survey. Motivated by this the scaling relations soon became important tools in

the analysis of Monte Carlo data, even though some voiced important concerns about the

practices of many standard simulations [21], and when adressing those concerns also began

to see deviations from the mainstream results.

Now, the scaling relations are both one of the principal predictions of standard renor-

malisations theory and in direct conflict with the existence of models where the high- and

low-temperature exponents differ, ie exactly the scenario we may have found. On the other

hand, the existence of universality classes has also to a large extent been motivated by

renormalisation theory, and the existence of a common behaviour for the Ising model on the

3-dimensional lattices is also in agreement with our data. So we are faced with a situation

where we either have to believe that finite-size corrections far beyond those usually assumed

mask the asymptotic behaviour of the Ising even on the largest lattices used today [13], or

standard renormalisation theory fails, due to the conflict between its scaling predictions and

distinct low- and high-temperature behaviours. In the latter, and probably in the eyes of

many, more extreme case, one would then suddenly need to find either a non-differentiable

version of the renormalisation theory, which is consistent with the many caveats from [25],

or an entirely new mechanism explaining the persistence of the universality class concept.

Here all the options presented seem to offer bountiful opportunities for further investigation.
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