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Abstract. In 1976 Fornaess [For76] proved that any strictly pseudoconvex domain in

C
n can be embedded into a strictly convex domain in Cm, for some m ≥ n. In this paper

we study the properties of domains which can be embedded into a convex domain and

give further examples of classes of pseudoconvex domains with such embeddings.

1. Introduction

One of the main differences between complex analysis in one and several variables is the

crucial role that the exact geometric properties of different domains begin to play. In one

variable the Riemann mapping theorem tells us that there is basically one simply connected

domain to study, the unit disc, and that the multiply connected cases are only marginally

more complicated. In several variables there are no such simplifying circumstances and

one can in fact find domains which are arbitrarily close to the unit ball and are still not

biholomorphic to the ball.

In this plethora of domains and their associated sets of holomorphic functions we find

that many techniques that we could use for the one variable case no longer work. Among

other things we get into trouble due to the unwieldy nature of zero-sets of even simple

functions like polynomials which no longer are mere point sets but rather some large and

and often uncontrollably winding variety.

However there are still some domains on which things work in a fairly simple way,

notably the geometrically convex sets and also the wider class of strictly pseudoconvex sets.

On geometrically convex sets we can in a simple way deduce properties like polynomial
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convexity and the existence of Stein neighbourhood bases thanks to simple geometrical

constructions.

Due to the aforementioned lack of biholomorphisms we can not hope to exhaust a

particularly large class of domains thanks their equivalence to convex domains. From a

well known theorem by Narashiman (see [Kra92]) we do however know that any part of the

boundary of a strictly pseudoconvex set can be made convex with a local biholomorphism.

The problem is that in most cases this biholomorphism can not be extended to make the

rest of the domain convex as well, for a further discussion of this see [Noe91]. But all

is not lost, in [For76] Fornaess proved for strictly pseudoconvex domains that while we

can not hope to find biholomorphisms to convex domains of the same dimension as our

original domain we can always find a biholomorphic embedding of it into a convex domain

in some higher dimension. Biholomorphic embeddings are not quite as good as ordinary

biholomorphisms since some biholomorphically invariant properties are not invariant when

we change dimension, but many properties are still invariant and we can make good use

of our embedding.

In this paper we study some of the properties of domains which can be biholomorphically

embedded into convex domains and give some new examples of classes of domains which

admit such embeddings.

2. Basic definitions

At first the theorem by Fornaess mentioned in the introduction can seem a bit perplexing

since it among other things tells us that many non-simply connected domains can be given

convex embeddings. In order to show how this is possible and give us something concrete

to have in mind later on we will start this section by an example.
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Figure 1. A modulus-plane view of the embedding in Ex 2.1

Example 2.1. Let U be an annulus in C centred at 0 having outer radius 1 and inner

radius 12 . Now define a mapping from U into the bi-disc D as Φ(z) = (z, 12z ). The mapping

is a biholomorphic embedding of U into the convex domain D just like we wanted. In

Fig.2.1 we can see the simple geometrical idea behinds this. The important thing to

notice here is that Φ gives a proper embedding of U into D, that is, the boundary is

mapped into the new boundary and the interior into the interior.

We will now start to formalise some of the properties of Ex.2.1. First some general

notation.

Definition 2.2.

(1) Given an domain Ω let H(Ω) denote the set of functions which are holomorphic in

Ω.

(2) Let Ak(Ω), k ∈ {0, 1, 2, . . . ,∞, ω}, denote Ck(Ω) ∩ H(Ω). Here Aω denotes the

space of functions which are holomorphic on some neighbourhood of Ω.

(3) Given two domains Ω1 ⊂ C
n and Ω2 ⊂ C

m,m ≥ n, we let Bk(Ω1,Ω2) denote the

set of proper bijective holomorphic mappings from Ω1 into Ω2 which extend to C
k

3



diffeomorphisms from Ω̄1 to Ω̄2. We let B
ω(Ω1,Ω2) denote the space of mappings

which extend to a biholomorphism of a neighbourhood of Ω̄1.

In order to get a useful embedding we need put some conditions on it. First we want

our mapping to be proper, that is we want it to map the boundary of the first domain, Ω1,

into the boundary of the second domain, Ω2 , and the interior into the interior. Second

we also want to make sure that in the case that our mapping extends to a domain larger

than Ω1 it takes the exterior of Ω1 into the exterior of Ω2. These conditions will make

sure that we can use many of the properties of the convex domain that we have embedded

Ω1 into. The reader can easily check that these conditions hold in Ex.2.1.

We now make the formal definition of our main concept and in order to avoid having to

repeat the phrase ‘possible to embed into a convex domain by a Ck-mapping, we introduce

the term convexifiable as follows:

Definition 2.3.

(1) A domain Ω ⊂⊂ Cn is said to be convexifiable if there is a convex domain Ω̂ ⊂⊂

C
m,m ≥ n, and a proper, bijective holomorphic embedding φ : Ω → Ω̂, φ(z) =

(φ1(z), φ2(z), . . . , φm), φj ∈ C(Ω).

Any such set Ω̂ is said to be an inflation of Ω1.

(2) Ω is said to be strictly convexifiable if Ω̂ can be chosen to be geometrically strictly

convex. A domain Ω is said to be geometrically strictly convex if any line connect-

ing two points on the boundary of Ω does not intersect the boundary in any other

points except these two.

(3) Ω is said to be k-convexifiable, k ∈ { 1, 2, . . . ,∞}, if φ can be chosen from Bk(Ω, Ω̂),

and ω-convexifiable if the mapping belongs to Bω(Ω, Ω̂) and the mapping φ takes

the exterior of Ω into the exterior of Ω̂.
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In this terminology Ex 2.1 shows that the annulus is an ω-convexifiable domain. Using

the same mapping it can actually be seen to be strictly ω-convexifiable with the ball as

an inflation.

Here it is also important to notice that we demand that the mapping φ must be con-

tinuous on the closure of Ω and not just on in the interior. To see the importance of this

it can be useful to keep the following example in mind as we go along.

Example 2.4. Let Ω be the Hartogs triangle Ω = {(z, w) : |z| < |w| < 1} and let φ be

the mapping φ(z, w) = (z, w, z
w
). This mapping maps Ω into the polydisc in C3 but is not

continuous at the origin. The Hartogs triangle is a simple example of a domain which is

not a domain of existence for A∞ and does not have a Stein neighbourhood basis.

3. Some properties of convexifiable domains

In this section we will take a look at some properties of domains which are possible to

embed into a convex domain. We will see that they share some of the nice properties of

convex domains and at the end of the section we will also mention some cases where things

do not work out, or at least are not as simple as one might have hoped for.

Observation 3.1. A convexifiable domain Ω is pseudoconvex.

Proof. Let Ω̂ be an inflation of Ω and φ the mapping connecting them.

Given any point p ∈ ∂Ω̂ ∩ φ(Ω) we can, since Ω̂ is convex, find a function f ∈ A0(Ω̂)

such that p ∈ Z = {z : f(z) = 0} and Z ∩ Ω̂◦ = ∅. Thus the function g = (f ◦ φ)−1 is a

function in H(Ω) which cannot be extended over φ−1(p). �

If the domain is ω-convexifiable it is not only pseudoconvex but can also be written as

the intersection of pseudoconvex domains in a very nice way.
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Theorem 3.2. If Ω is ω-convexifiable then Ω̄ has a Stein neighbourhood basis. More

precisely there exists a continuum of domains Wt, 0 ≤ t ≤ 1, such that

(1) W0 = Ω.

(2) Wi ⊂⊂Wj if i < j.

(3) ∂Wt is homotopic to ∂Ω.

(4) Wi is Runge with respect to Wj if i < j.

Proof. Let Ω̂ be an inflation of Ω, without loss of generality we can assume that 0 lies in

the interior of Ω̂, and φ the mapping from Ω into Ω̂ .

Let ψk be defined by z 7→ kz, for k > 1. Clearly ψk is a biholomorphism of Ω̂ onto a

scaled copy of itself and since ψk fixes the origin Ω̂ ⊂⊂ ψk(Ω̂).

Now let Ω2 be a domain such that Ω ⊂⊂ Ω2 and φ is bijective from Ω2 to φ(Ω2). Let

c > 0 be a number such that φ(∂Ω2) lies outside ψ1+c(Ω̂).

Define Wt = φ−1(φ(Ω2) ∩ ψ1+ct(Ω̂)). Properties 1 to 3 in the theorem can easily be

verified and property 4 follows from paragraph 4 in [DG60]. �

Our next theorem concerns the boundary structure of a convexifiable domain. We recall

that a point p is called a peak-point for a function space A(Ω) if there exists a function

f ∈ A(Ω) such that |f(p)| = supz∈Ω |f(z)|, and |f(z)| < |f(p)| if z ∈ Ω, z 6= p.

Theorem 3.3. If Ω is a strictly k-convexifiable domain then every boundary point is a

peak-point for Ak(Ω).

Proof. Let Ω̂ be an inflation of Ω and Φ the map from Ω into Ω̂.

Now let p ∈ ∂Ω and W be a hyperplane, defined by F (z) = 0, where F is a linear

function in z, not intersecting Ω̂ such that Φ(p) is the unique point in Ω̂ at minimum

distance from W . Such a W exists since Ω̂ is strictly convex.
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Set fp(z) =
1

F (Φ(z)) . It is easily checked that |f(z)| attains its maximum at p and

belongs to Ak(Ω) �

Together with the following result of Basener [Bas77] we obtain an interesting property

of strictly convexifiable domains.

Lemma 3.4 (Basener). Let Ω be a domain with C2 boundary and p a boundary point

which is a peak point for A(Ω), then p is the limit of a set of strictly pseudoconvex boundary

points.

Corollary 3.5. If Ω is a strictly convexifiable domain with C2-boundary then the set of

strictly pseudoconvex boundary points of Ω is dense in ∂Ω.

Proof. The result follows directly from the above theorem and Lemma 3.4. �

We now turn to some questions about approximation of functions on Ω and the number

of generators of some of the function algebras on Ω. Let A(Ω) be a Banach algebra of

holomorphic functions on Ω. A set of functions {f1, f2, . . . , fk}, fi ∈ A(Ω), is said to

generate A(Ω) topologically if the A-norm closure of the set of polynomials in fi is A(Ω)

and the fi are called generators for A(Ω).

Furthermore we say that a boundary point p ∈ ∂Ω is a strictly convex boundary point

of Ω if there is a tangent hyperplane P of ∂Ω such that P ∩ ∂Ω = p. Observe that this

property is not local.

Theorem 3.6. If Ω is k-convexifiable then H(Ω) is generated, in the sense of uniform

convergence on compact sets, by a finite set of functions in Ak(Ω).

Proof. Let Ω̂ be an inflation of Ω and φ the mapping between them.
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Every function f ∈ H(Ω) defines a holomorphic function f1 = f ◦ φ−1 on φ(Ω). By

theorem I5 in Gunning [Gun90a] we get that f1 can be extended to a holomorphic function

f2 ∈ H(Ω̂).

Since Ω̂ is convex its closure is also polynomially convex and thus every function in

H(Ω̂) can be approximated uniformly on compact subsets by polynomials.

This also means that f2 can be approximated uniformly on compacts in φ(Ω) by polyno-

mials. Thus every function inH(Ω) can be approximated on compacts in Ω by polynomials

in the components of the mapping φ and the components of Φ is thus a set of generators

for H(Ω).

�

From our earlier results we also have the following.

Corollary 3.7. If Ω is k-convexifiable then Ω̄ is a domain of existence for Ak(Ω).

Proof. Given p ∈ ∂Ω let f be a (weak) peak function for p, as guaranteed by Theorem

3.3, and choose f such that f(p) = 1. Then the function (1 − f(z))k+1 sin((1 − f(z))−1)

will be a function in Ak(Ω) which does not extend over p. �

This corollary does in fact imply not only that Ω is a domain of existence but also that

any analytic subvariety of Ω is a domain of existence for Ak. For an example of a domain

of existence which does not have this stronger property see [BF98]. Domains which do

not have the stronger property are of some interest in their own since they give, at least

as far as the author knows, the only known way to explicitly construct homomorphisms

in the corona of Ak(Ω).

Next we will return to another question regarding generators, the Gleason-property.

Let A be an algebra of functions on Ω and let p ∈ Ω. We say that Ω has the Gleason
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A-property at p if the maximal ideal of functions vanishing at p is algebraically generated

by the coordinate functions z1 − p1, z2 − p2, . . . , zn − pn. That is every function in this

ideal should be expressible as a polynomial in the coordinate functions with coefficients

from A. If Ω has the Gleason-property at every p ∈ Ω then Ω is said to have the Gleason

A-property.

Furthermore let us recall that for certain types of domains Ω we can extend a holor-

mophic function f defined on a subvariety of Ω in such a way that the extension preserves

regularity properties of the original function. Henkin [Hen72] proved that if Ω is strictly

pseudoconvex then a bounded function f defined of a subvariety of Ω can be extended

to a function in H∞(Ω). Later on Henkin and Polyakov [HP84] proved the analogous

theorem for subvarieties of a polydisc. Likewise Amar [Ama84] proved that if Ω has C∞-

smooth boundary a function which belong to A∞ on a subvariety of Ω can be extended

ta a function in A∞(Ω).

Theorem 3.8. Let Ω be a ω-convexifiable domain and Ω̂ ⊂ Cm an inflation of Ω such that

Ω̂ has at least C1+ε-boundary, 0 < ε < 1. Further assume that there exists an extension

operator L : A(Ω)→ A(Ω̂).

If A is either Ak(Ω), 0 ≤ k < ∞ or H∞(Ω), then Ω has the Gleason A-property. For

A = A∞(Ω) Ω has the Gleason A-property, without any assumptions on the boundary

smoothness of Ω̂.

Proof. Let p be a point in Ω and f ∈ A be such that f(p) = 0.

Using the extension operator L we can extend the function f ◦ Φ−1(z) to a function

f̃ = L(f) in A(Ω̂) such that f̃(P ) = 0, where P = Φ(p).

By theorem 3.9, 3.10 or 3.12 below Ω̂ has the Gleason A-property and so
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f̃ =
∑

i

gi(z)(zi − Pi).

This means that

f =
∑

i

gi(Φ(z))(φi(z)− Pi)

where gi(Φ(z)) ∈ A(Ω) and the (φi(z)− Pi) are holomorphic on a neighbourhood of Ω.

Since Ω is ω-convexifiable we know from theorem 3.2 that there is a smooth strictly

pseudoconvex set Ω2 ⊃⊃ Ω such that (φi(z)− Pi) ∈ H(Ω2). Now by theorem 3.11 Ω2 has

the Gleason H(Ω2)-property and so

(φi(z)− Pi) =
∑

j

hij(z)(zj − pj),

where hij ∈ H(Ω2).

Using some simple algebra we get

f =
∑

i

gi(Φ(z))(
∑

j

hij(z)(zj − pj)) =
∑

i

ki(z)(zi − pi),

with ki ∈ A.

�

I would here like to conjecture that the theorem holds for all convexifiable domains. In

particular that any convex domain has the GleasonA-property for the mentioned algebras.

That Ω has the Gleason Aω-property is immediate from Theorem 3.2 and 3.11.

We say that a domain Ω has C1+ε-boundary if there is a defining function σ(z) for Ω

such that σ ∈ C1(Ω) and each first order derivative of σ satisfies a Hölder-ε condition.
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Theorem 3.9 (Backlund-Fällström). [BF95] If Ω is a convex domain in Cn with C1+ε

boundary then Ω has the Gleason A-property for both A(Ω) and H∞(Ω).

Theorem 3.10 (Lemmers). [Lem02] If Ω is a convex domain in Cn with C1+ε boundary

then Ω has the Gleason A-property for Ak(Ω), 0 ≤ k ≤ ∞.

Theorem 3.11 (Oka-Hefer). [Oka41] Let Ω be a pseudoconvex domain in Cn, p a point

in Ω and f ∈ H(Ω) such that f(p) = 0, then there exists g1, . . . , gn ∈ H(Ω) such that

f(z) =
∑

gi(z)(z − p).

Theorem 3.12. If Ω is a convex domain in Cn then Ω has the Gleason A-property for

A∞(Ω).

Proof. Our proof will be based on the method of Leibenzon [Hen71]. Let p be a point in

Ω, without loss of generality we can assume that p = 0.

Following Leibenzon we note that

f(z) =

∫ 1

0

d

dλ
f(λz)dλ =

∫ 1

0

n∑

i=1

zi (Dif) (λz)dλ =

=
n∑

i=1

zi

∫ 1

0
(Dif) (λz)dλ =

n∑

i=1

ziTi(f, z).

Thus we have a solved the Gleason problem if we can show that

Ti(f, z) =

∫ 1

0
(Dif) (λz)dλ

is a function in A∞ whenever f ∈ A∞.

Now we have that

∣∣∣∣
∂

∂zj
Ti(f, z)

∣∣∣∣ =
∣∣∣∣
∂

∂zj

∫ 1

0
(Dif) (λz)dλ

∣∣∣∣ ≤ sup
z∈Ω

∣∣∣∣
∂2

∂zj∂zi
f(z)

∣∣∣∣ .
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Thus if ∂2

∂zj∂zi
f is bounded for all i, j then each first derivative of Ti(f, z) will be bounded

and so Ti(f, z) will be continuous. This implies that if f ∈ Ak then Ti(f, z) ∈ Ak−2.

However for f ∈ A∞ this means that Ti(f, z) ∈ A
∞.

�

In this section we have seen that some of the good properties of convex domains give

rise to corresponding good properties for convexifiable domains. There are however some

things that do not work out quite as nicely. For example the Monge-Ampàre operator of

a function on the inflation might be zero but its pullback to the original domain is most

likely not. We can however expect properties of a more algebraic character to transform

well.

4. Convexifiability of complex domains

In the introduction we mentioned the theorem by Fornaess which started this investigation

and also gave an example of a convexifiable domain not covered by this theorem. In this

section we will give more examples of classes of convexifiable domains and ways to construct

new domains from other convexifiable domains.

Our first two theorems mimics two basic theorems about pseudoconvex domains and

gives us two operations under which the property of convexifiability is closed.

Theorem 4.1. The cartesian product Ω3 = Ω1 × Ω2 of a k-convexifiable domain Ω1 and

a j-convexifiable domain Ω2 is an m-convexifiable domain, m = min{ j, k }, ∞ ≺ ω.

Proof. Let Ω̂1 be an inflation of Ω1 and φ1 the mapping connecting them, Ω̂2 and φ2

analogously for Ω2.
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Now let Ω̂3 = Ω̂1× Ω̂2 and φ3 = (φ1, φ2). The domain Ω̂3 is convex, φ3 is proper, since

if (z, w) is mapped into the boundary of Ω3 then either z or w belongs to the boundary of

Ω1 or Ω2 respectively, and has the claimed regularity. We thus have an inflation of Ω3 �

Theorem 4.2. The intersection Ω3 = Ω1 ∩ Ω2 of a k-convexifiable domain Ω1 and a

j-convexifiable domain Ω2 is an m-convexifiable domain, m = min{ j, k }, ∞ ≺ ω.

Proof. Choose Ω̂3 and φ3 as in the proof of Theorem 4.1. φ3 is proper since if (z, w)

belongs to the boundary of Ω3 then at least one of z and w must belong to the boundary

of Ω1 and Ω2 respectively, and thus to boundary of Ω1 ∩ Ω2. �

The previous theorem should also hold in the form that if Ω1 and Ω2 are both strictly

convexifiable then Ω3 is strictly convexifiable as well. I do not have a presentable proof of

this so I leave this a conjecture.

In the same spirit we also have the following proposition.

Proposition 4.3. Let Ω be a (strictly) k-convexifiable domain and V a holomorphic sub-

variety of Ω. Then V is also (strictly) k-convexifiable.

Proof. Let Ω̂ be an inflation of Ω and Φ the mapping between them.

Now just use the restriction of Φ to V and the same set Ω̂ as an inflation of V . �

Next we recall Ex 2.1 in which we saw how to convexify an annulus. A generalisation

of that example shows that a large number of domains in C are also convexifiable.

Theorem 4.4. Let Ω ⊂ C be a domain of genus k < ∞ with Cj-boundary such that no

component of its complement is a point. Then Ω is j-convexifiable and the polydisc in

C
k+1 can be chosen as an inflation of Ω.
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Proof. Let C0, C1, . . . , Ck−1 be the contours bounding Ω and choose the order so that C1

is the outer boundary.

Let φ0 be a biholomorphism of Ω that takes C0 to a fixed circle C and φi, i > 0 a

biholomorphism of Ω that takes C0 to C and Ci to a circle concentric to C and of smaller

radius. Such biholomorphisms exist and belong to Cj(Ω), see for example [Ahl79]

Now let Φ = (φ0,
1
φ1
, 1
φ2
, . . . , 1

φk
). Since the modulus of φi is constant on Ci Φ maps Ω

into the (k + 1)-dimensional polydisc which becomes an inflation of Ω. �

By Theorem 3.6 this means that H(Ω) has a set of k + 1 generators and using your

favourite proof of Runge’s theorem this can also be seen to be the minimum number

needed.

In the previous theorem we excluded domains with points removed from them and as

small sidetrack we will give a sufficient condition for a domain not to be convexifiable.

From this proposition we will see that the conditions of the previous theorem are in fact

not only sufficient but also necessary.

Proposition 4.5. If the complement of a pseudoconvex domain Ω ⊂ Cn contains a holo-

morphic subvariety V such that the intersection of V with the interior of Ω is non-empty

then Ω can not be convexified.

Proof. Let S = Ω \ ∂Ω. If it was possible to convexify Ω then for each point p ∈ ∂Ω there

would exist a non-constant bounded holomorphic function such that supz∈Ω |f(z)| ≤ |f(p)|.

Let f be such a weak peak function for a point p ∈ S. By theorem K3 of [Gun90b] this

function can be extended over V to a function holomorphic on S. Now this function would

have a local maximum at p and must be constant.

We have a contradiction. �
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For further conditions under which a domain can not be convexifiable see [Noe91] where,

as an example, it is shown that the “worm”-domain of Diederich and Fornaess can not be

convexified by a smooth enough mapping.

Generalising further from example 2.1 we have the following.

Theorem 4.6. All analytic polyhedra Ω = {z : |fj(z)| < 1, ∀fj , j = 1, . . . , k, fj ∈

H(W ), Ω ⊂⊂W} in Cn can be ω-convexified into the k + n-dimensional polydisc.

Proof. Choose c such that |cz| < 1, ∀z ∈ Ω̄ and let Φ = (cz, f1, f1, . . . , fk). At any point

on the boundary of Ω there will be one or more function having modulus 1 and the rest

will have a modulus smaller than one. Thus every point in ∂Ω will be mapped into the

boundary of the (n+k)-dimensional polydisc and the interior points into its interior. The

mapping Φ will have the required smoothness since the functions fj are all holomorphic

on some neighbourhood of Ω. �

Now, as the finale among the theorems of this section, we cite the original theorem by

Fornaess concerning strictly pseudoconvex sets.

Theorem 4.7 (Fornaess). [For76] Let G ⊂⊂ X ⊂⊂ Cn be a bounded, strictly pseudoconvex

domain with Ck boundary, k ≥ 2, and X a bounded pseudoconvex domain. Then there

exist a holomorphic map ψ : X → Cm for some m ≥ n and a convex, strictly pseudoconvex,

bounded domain C with Ck boundary in Cm such that

(1) ψ is biholomorphic onto a closed subvariety of Cm,

(2) ψ(G) ⊂ C and ψ(X \ Ḡ) ⊂ Cm \ C̄ and

(3) ψ(X) intersects ∂C transversally

In our terminology this would mean that G is strictly ω-convexifiable.
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We note the stark contrast between the situation in Theorem 4.1, 4.4 and 4.6 which tell

us that all analytic polyhedra and all poly-domains can be convexified into the polydisc,

a Levi-flat domain and Theorem 4.7 which maps strictly pseudoconvex sets into domains

which are both convex and strictly pseudoconvex. In fact none of the above theorems

gives us any large class of domains with inflations which are weakly pseudoconvex but not

Levi-flat.

It would of course be interesting to find out more about which classes of domains are

convexifiable. Corollary 3.5 tells us that smooth strictly convexifiable domain has a dense

set of strictly pseudoconvex boundary points. That almost everywhere strictly pseudocon-

vex boundary is not a sufficient condition for convexification can be seen from the domain

{(z, w) : |z|2 + (|w|+ 1)2 < 1}, a slight variation of the Hartogs triangle, the boundary of

which is strictly pseudoconvex except at the origin. This domain is however not smooth

and it would be interesting to find out whether smoothness combined with some condition

weaker than strict pseudoconvexity implies convexifiability. For domains which are not

C2-smooth one possibility would be that the Levi-form is defined and uniformly bounded

from below at a dense set of strictly pseudoconvex boundary points, as is the case with

the intersection of two strictly pseudoconvex domains.

This question gains some interest from N Sibony’s construction of a smooth domain,

the boundary of which is strictly pseudoconvex except at one point, on which the corona

problem for H∞ fails, see [Sib87]. The existence of domains such as this together with

extension theorems such as those mentioned in connction with Theorem 3.8 raises the

interesting possibility that there might exist convex domains on which the corona problem

for H∞ fails.
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L. Lĕıbenzon, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 37–42.

[Hen72] G. M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general

position in a strictly pseudoconvex domain, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 540–

567.

[HP84] Guennadi M. Henkin and Pierre L. Polyakov, Prolongement des fonctions holomorphes bornées
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