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Abstract5

The aim of this paper is to extend the previous work on transfer matrix6

compression in the case of graph homomorphism. For H-homomorphisms7

of lattice-like graphs we demonstrate how the automorphisms of H, as8

well as those of the underlying lattice, can be used to reduce the size of9

the relevant transfer matrices.10

As applications of this method we give currently best known bounds11

for the number of 4 and 5-colourings of the square grid, and the number12

of 3 and 4-colourings of the 3-dimensional cubic lattice.13

Finally we also discuss approximate compression of transfer matrices.14

1 Introduction15

Transfer matrices is a standard tool in various branches of mathematics. In16

enumerative combinatorics they have been used for a long time to solve counting17

problems which can be described using graph homomorphisms. In statistical18

physics transfer matrices have been a well used tool for the computation of19

partition functions of various spin models. In ergodic theory transfer matrices20

are used to describe the behaviour of a class of dynamical system known as21

subshifts of finite type. Recently the many similarities between these uses have22

been put on a firm mathematical ground. That the calculation of entropies23

for Zd-subshifts of finite type are equivalent to counting graph homomorphisms24

from Zd into some graph H was demonstrated in [5]. In [9] it was proven that25

counting weighted graph homomorphisms is equivalent to computation of the26

partition function for statistical physics models satisfying a condition known as27

reflection positivity. The study of phase transitions in statistical physics models28

has also begun to be studied in the language of homomorphisms [3].29

A general limitation for all these applications is that transfer matrices tend30

to grow fast with the size of the system considered, thus limiting the size of31

the system one can work with. A recent development in this area is the use32

of automorphisms of the underlying graphs to reduce the size of the matrices.33

This was done for a special case in [4] and was developed as a general method in34

[10]. Our aim here is first to show how this method, now called transfer matrix35
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compression, in many cases can be taken even further than earlier applications36

and also discuss how one can make even greater size reductions if one is ready37

to settle for bounds of the computed entropies rather than exact values. For38

many applications the latter is sufficient.39

Let us put things on a firmer ground. A homomorphism φ from a graph G40

to a graph H, which may have loops, is a mapping which preserves adjacencies,41

i.e. if (x, y) ∈ E(G) then (φ(x), φ(y)) ∈ E(H). The set of all homomorphisms42

from G to H is denoted Hom(G,H). We say that H is a weighted graph if there43

are two functions αH : V (H) → F and βH : E(H) → F , where F is a ring.44

Given a weighted graph H we assign a weight w(φ) to each homomorphism φ45

from G to H46

w(φ) =
∏

x∈V (G)

αH(φ(x))
∏

xy∈E(G)

βH(φ(x), φ(y)) (1)47

Let us give a few examples:48

Example 1.1.49

50

1. H = Kq, α = β = 1, corresponds to ordinary proper q-colourings.51

2. Let H be a K2 with a loop on one vertex, let the edge have weight 1, the52

loop weight t and α = 1. For t = 1 the homomorphisms correspond to53

independent sets and for general t we have the so called hard-core lattice54

gas model.55

3. If H is a Kq with loops on every vertex and the weights are t−1 on the56

loops, t on the ordinary edges and 1 on the vertices we have the q-state57

Potts model.58

4. If we take the previous example with q = 2 and put a weight s on one59

vertex of H and s−1 on the other vertex, we have the Ising model with an60

external field.61

If we have a model where we also want to put colours or “spins” on the62

edges of G, e.g. when considering matchings, or on both edges and vertices, we63

can instead consider the line-graph or total-graph of the underlying graph G re-64

spectively. It is also straightforward to generalise these concepts to hypergraphs65

if one wants to consider interaction between larger sets of vertices.66

We next define a weighted counter for these homomorphisms

Z(G,H) =
∑

φ∈Hom(G,H)

w(φ)

If all weights on H are just 1 this will be exactly |Hom(G,H)|. In spin models67

the weights are often taken to be of the form eK for a parameter K which is68

interpreted as a temperature, and then Z(G,H) is called the partition function69

of the model. In ergodic theory Z(G,H) is called the pressure of the subshift70
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described by G and H. In most applications the aim is either to compute71

Z(G,H) when F is a ring of polynomials, as in [7], or to determine how fast72

Z(Gn, H) grows when F = R and Gn is some sequence of graphs, see e.g. [5, 4].73

2 Polygraphs and Transfer Matrices74

Transfer matrices are most useful for computation within a class of graphs known
as polygraphs. This class was introduced in [1], where the transfer matrices were
used to compute matching polynomials. A polygraph G is defined by a set of
disjoint graphs G1, G2, . . . , Gm and a set of binary relations Υ1,Υ2, . . . ,Υm,
where Υi ⊂ V (Gi)× V (Gi+1). The vertex set of G is ∪iV (Gi) and the edge set
is

E(G) = ∪iE(Gi) ∪i Υi

If all Gi = G and Υi = Υ for all i = 1, . . . ,m we write the corresponding75

polygraph as G(G,Υ,m).76

Given a polygraph G and a weighted graph H we can compute Z(G, H) using77

a sequence of transfer matrices. We define a matrix M(i) for going from Gi to78

Gi+1 as follows.79

Let Φ(Gi) denote the set of restrictions of all homomorphisms in Hom(G, H)80

to Gi. We call a member of Φ(Gi) a state on Gi. Now let the rows of M(i)81

be indexed by the states on Gi and the columns by the states on Gi+1. We set82

Mx,y(i) = 0 if there is no homomorphism φ ∈ Hom(G, H) such that φ|Gi = x83

and φ|Gi+1
= y. If there exists such a φ we set Mx,y equal to the contribution84

to the weight w(φ) of the edges in Υi and the edges and vertices of Gi+1. We85

also define an associated vector η. The position in η corresponding to the row86

x is set equal to the weight of the partial homomorphism x.87

The partition function is now given by88

Z(G, H) = η

(∏

i

M(i)

)
1 (2)89

One can also consider cyclic polygraphs where the last relation Υ connects Gm90

to G1. In this case the partition function is given by the trace of the transfer91

matrix product,92

Z(G, H) = Tr

(∏

i

M(i)

)
(3)93

3 Exact Compression of Transfer Matrices94

Henceforth we will assume that our polygraphs are on the form G(G,Υ,m).95

Most of what follows can be adapted to general polygraphs as well. Let us96

recall that given an N × N matrix M a partition X = {X1, X2, . . . , Xr} of97

{1, ..., N} is called an equitable partition if
∑
l∈Aj M(i1, j) =

∑
l∈Xj M(i2, j)98

when i1, i2 ∈ Xi.99
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Given a partition X of the states on G we define the compressed transfer100

matrix for Z(G, H) to be101

CX (i, j) =
∑

l∈Xj
M(k, l), k ∈ Xi, i, j = 1 . . . r (4)102

The main theorem of [10] can be stated as103

Theorem 3.1. If X is an equitable partition of M then104

CnX (i, j) =
∑

l∈Xj
Mn(k, l), k ∈ Xi, i, j = 1 . . . r (5)105

This has the following corollary106

Corollary 3.2. Let η be the vector of length N whose i:th entry is |Xi| w(xi),
where xi ∈ Xi. Then

Z(G, H) = η

(∏

i

M(i)

)
1

The main consequence of these results, which has been used in [10], [4], [5],107

is108

Corollary 3.3. If M is a transfer matrix and the partition X consists of orbits109

on the set of states on G under the automorphism group Aut(G), then X is110

equitable.111

This corollary lets us make use of automorphisms of G to compress our112

transfer matrices and for graphs with reasonably large automorphism group,113

such as cycles, the reduction in size can be substantial.114

Example 3.4. Let us look at the transfer matrix for Hom(G(P3, Id, n),K3),115

i.e. 3-colourings of the graph P3 × Pn.116

There are 12 states on P3 and the only nontrivial member of Aut(P3) is a re-117

flection in the midpoint. If we use 1,2,3 to denote colours we find that there are 9118

orbits: {{121}, {212}, {313}, {131}, {232}, {323}, {123, 321}, {132, 231}, {213, 312}}119

Here we get the following 9× 9 matrix, instead of a 12× 12 matrix,

C =




0 0 1 1 1 0 0 0 2
0 0 1 0 1 1 0 0 2
1 1 0 0 0 1 2 0 0
1 0 0 0 1 1 2 0 0
1 1 0 1 0 0 0 2 0
0 1 1 1 0 0 0 2 0
0 0 1 1 0 0 0 1 1
0 0 0 0 1 1 1 0 1
1 1 0 0 0 0 1 1 0




η = {1, 1, 1, 1, 1, 1, 2, 2, 2}

Even though we have reduced the side of the matrix by one quarter we still have120

a fairly sparse matrix.121
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From algebraic graph theory [6] we know that if G is any graph and X122

is a partition of its vertices into orbits under Aut(G) then the corresponding123

partition is equitable. If we choose to interpret the transfer matrix M as the124

adjacency matrix of a weighted graph, then what we did in Corollary 3.3 can125

be interpreted as using the subgroup of Aut(M) which is induced by Aut(G)126

to partition M . However, Aut(M) has an even larger subgroup induced by127

Aut(G) × Aut(H). Here Aut(H) is assumed to preserve the weights on H as128

well as the adjacencies.129

Corollary 3.5. Let X be a partition of M given by the orbits of Aut(G) ×130

Aut(H) then X is equitable.131

When the graph H is highly symmetric, such as in the case of proper col-132

ourings of G or the partition function of the Potts model, the extra reduction133

in size achieved here can be remarkable.134

Example 3.6. If we use the automorphism group of K3 as well in Example 3.4
we now only find two orbits, {{121, 212, 313, 131, 232, 323}, {123, 321, 132, 231, 213, 312}},
and the compressed transfer matrix has side 2:

C =

[
3 2
2 2

]
v = {6, 6}

4 Application to the asymptotic number of q-135

colourings of lattices136

The number of proper q-colourings of an n × n square grid, or Pn × Pn, is137

known to grow exponentially as a function of n2. We denote the basis for this138

exponential growth by λs(q). This is a quantity which is of interest both in139

enumerative combinatorics and statistical physics. In the latter case log λs(q)140

is seen as the ground state entropy of the much studied antiferromagnetic Potts141

model on the square grid, see e.g. [11] for a survey.142

For 3-colourings Lieb [8] found the exact asymptotic value of λs(3) =
(

4
3

) 3
2

143

but for larger q the value of λs(q) is still unknown. As a full-scale example of our144

methods we now look at the compression of transfer matrices for q-colourings145

of the square grid for q = 4, 5, for the cubic grid Pn × Pn × Pn for q = 3, 4, and146

their use in getting bounds for λs(q).147

It is known that the maximum eigenvalues θ1(k) and θ2(k) of the transfer148

matrices for Hom(G(Pk, Id, n),Kq) and Hom(G(Ck, Id, n),Kq) respectively, can149

be used to give upper and lower bounds for λs(q), see e.g. [5] for a general150

treatment. In particular151

θ1(k + 1)

θ1(k)
≤ λs(q) ≤ θ2(2k)

1
2k (6)152

So we can bound λs(q) by computing θ1(k) for consecutive k and θ2(k) for even153

k.154
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n 3 4 5 6 7 8 9 10 11
N1 36 108 324 972 2916 8748 26244 78732 236196
N2 24 54 180 486 1512 4374 13284 39366 118584
N3 2 4 10 25 70 196 574 1681 5002
N1 24 84 240 732 2184 6564 19680 59052 177144
N2 4 21 24 92 156 498 1096 3210 8052
N3 1 3 2 9 10 34 57 169 366

Table 1: Transfer matrix sizes for 4-colourings. the upper three rows are for
transferring a path, and the lower three for a cycle.

In Table 1 we have given the size of the transfer matrix for Hom(G(Pk, Id, n),K3)155

and Hom(G(Ck, Id, n),K3). Here N1 denotes the side of the uncompressed156

transfer matrix, N2 the side when the automorphism group of Pk and Ck re-157

spectively were used, and N3 the size when the automorphism group of K3158

was used as well. The effect of the larger automorphism group of the cycle is159

well visible, as is the gain from including the automorphism group of K4 in the160

compression step.161

For small k the transfer matrices and eigenvalues were computed first with162

a Mathematica program and also with a Fortran 90 program. For larger k the163

Fortran 90 program was run on a linux cluster. In Table 2 of Appendix A we164

have collected the computed eigenvalues. The higher precision values for small165

k are due to the Mathematica program.166

Using these eigenvalues and inequalities 6 we find the following bounds for167

λs(4):168

2.336056640723116 ≤ λs(4) ≤ 2.33606820555777 (7)169

To our knowledge these are currently the best rigorous bounds for λs(4). In [2]
the first terms of a series expansion in 1

q−1 for λs(q) was obtained and using
this series it was estimated that

λs(4) = 2.336056641± 0.000 000 001,

with a heuristic error bound, an estimate which fits in just above our lower170

bound.171

In the same way we computed the corresponding eigenvalues for 5-colourings,172

given in Table 3 of Appendix A. The bounds so obtained for λs(5) are173

3.2504049231640764 ≤ λs(5) ≤ 3.250407145038276 (8)174

For the growth rate λc(q) of the number q-colourings of the cubic lattice Pk ×
Pk×Pk there are no exact results known. In [2] series estimates were also given
for λc(3) and λc(4), however these estimates were based on much shorter series
than those for the square grid and were given as

λc(3) = 1.4435± 0.0005
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λc(4) = 2.043± 0.001

In order to compute bounds for the cubic lattice we can make use of the175

observations that λc(q) is greater than the maximum eigenvalue for Hom(G(Pk×176

C`, Id, n),Kq), since colourings of these graphs can be extended to periodic177

colourings of Hom(G(Pk × P` t, Id, n),Kq) for all t. Likewise λc(q) is less than178

the maximum eigenvalue for Hom(G(Pk × P`, Id, n),Kq), since the number of179

colourings is submultiplicative.180

As before we can get lower bounds for the maximum eigenvalue of Hom(G(Pk×181

C`, Id, n),Kq) for a fixed ` by computing the maximum eigenvalues for consecut-182

ive k, and for each value of ` we will get lower bound for λc(q). Similarly we can183

get upper bounds for the maximum eigenvalue of Hom(G(Pk×P`, Id, n),Kq) by184

computing the maximum eigenvalue of Hom(G(Ck × P`, Id, n),K3) for even k.185

These eigenvalues are in turn bounded from above by the maximum eigenvalue186

of Hom(G(Ck × C`, Id, n),K3), for even k and `.187

For λc(3) our best bounds comes from the eigenvalues of Hom(G(C6 ×188

C6, Id, n),Kq) and Hom(G(Pk×C4, Id, n),Kq), for λc(4) the bounds were achieved189

by Hom(G(C4 × C4, Id, n),Kq) and Hom(G(Pk × C4, Id, n),Kq)190

1.4460096817417 ≤ λc(3) ≤ 1.4470681274660 (9)191

2.0343787307189 ≤ λc(4) ≤ 2.0652128520667 (10)192

As we can see the estimate from [2] for λc(4) is within our bounds but their193

estimate for λc(3) is well below the lower bound, even when their heuristic error194

estimate is taken into account. As mentioned in [2] this kind of “miss” by the195

series estimate could indicate a physically interesting structure in the set of196

3-colourings.197

5 Approximate Compression198

For many applications the ring F is the real numbers and one typically has only199

positive weights. If the aim is to compute only the maximum eigenvalue of M ,200

as in Example 4, we can go further with our compression than in the previous201

section. First we here only need to care about the so called main part of the202

spectrum of M , i.e. the eigenvalues with eigenvector not orthogonal to 1, and203

of the main part we only need to preserve the maximum eigenvalue. We can204

now make use of one of the standard theorems of spectral graph theory, see e.g.205

[6].206

Theorem 5.1 (Interlacing of eigenvalues). Let S be an n×m matrix such
that STS) = I, M a hermitian n × n matrix, and set M ′ = STMS. Let the
eigenvalues of M be λ1 ≥ λ2, . . . , λn and those of M ′ be θ1 ≥ θ2, . . . ,≥ θm.
Then the eigenvalues of M ′ interlace the eigenvalues of M , that is,

λj ≥ θj ≥ λn−m+j
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Corollary 5.2. Let M be an m×m hermitian matrix and let X = {X1, X2, . . .}207

be a partition of {1, . . . ,m}. Define a matrix B where Bi,j is the average row208

sum in MXi,Xj . Then the eigenvalues of B interlace those of M .209

Proof. Apply Theorem 5.1 with the matrix S given by Si,j = |Xi|−
1
2 if j ∈ Xi210

and 0 elsewhere.211

For a partition which is not necessarily equitable we thus find212

Corollary 5.3. Let X be a partition of the rows and columns of M then the213

maximum eigenvalue of C(X ) gives a lower bound on λ1(M).214

Given a partition X we can also define a matrix D defined as in the previous215

corollary but using the maximum row sum rather than the average.216

Corollary 5.4. The maximum eigenvalue of D gives an upper bound on λ1(M).217

For many choices of weighted graph H it is the case that Z(G,H) is either218

sub- or super-additive with respect to addition of edges and/or vertices to G.219

In this situation the corollaries of the interlacing theorem can be used to give220

us upper and lower bounds on the asymptotics of the maximum eigenvalues as221

G becomes larger. These bounds can then in turn be used in combination with222

inequalities like 6.223

In both Corollary 5.3 and 5.4 the choice of partition X will influence the224

value of the eigenvalue bound. How the partition should be chosen in order to225

get a good approximation will depend on the underlying graphs and weights226

and it is hard to say anything much more precise than that one should strive to227

get blocks MXi,Xj with as closely concentrated row-sums as possible.228

Example 5.5. In order to demonstrate the approximate bounds, and the in-229

fluence of the choice of partition X , we have computed these bounds for the230

transfer matrix for the number of 4-colourings on P12 × Pn and C14 × Pn.231

We have used two kinds of partition X .232

1. For the first type of partition we view each colouring as an integer written233

in base 4, for cycles we choose an arbitrary vertex to be the lowest digit.234

Next we sort the colourings as if they were integers.235

Given this sorted list of the colourings we partitioned the list into con-236

sequtive sublists of length k and k − 1, with as few list of length k − 1 as237

possible.238

2. As our second kind of partition we randomly partitioned the list of colours239

into parts of size K.240

For these two partitions we next computed an upper bound for the largest241

eigenvalue of the transfer matrix for C14 and a lower bound for that of P12. For242

each graph and partitioning we choose K as to give compressed matrices with243

side from 0.9 times the original side down to 0.1. For the random ordering we244

tried several random partitions.245
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In Figures 1 and 2 we have plotted the approximate eigenvalue divided by246

the correct eigenvalue. We find that the lower bounds tend to be more accurate247

than the upper bounds. In both cases the Integer encoding partition gives a248

noticeably better approximation than the random partitions. However, for the249

lower bound even the random partitions can be used to compress the matrix250

down to one tenth of its original side and still get a bound which is just one251

percent less than the correct value.252

0.2 0.4 0.6 0.8 1
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1.15
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1.3

Figure 1: Approximate eigenvalues for C14. Connected points are from the
integer encoding. Clusters of isolated points are random partitions.
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0.99

0.992

0.994
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0.998

Figure 2: Approximate eigenvalues for P12. Connected points are from the
Integer encoding. Clusters of isolated points are random partitions.
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A Colouring eigenvalues for the square grid281

k Pk Ck
3 16.34846922834953429459185 11
4 38.18874899819785577572648 31.69693845669906858918370
5 89.20972864650976523895547 67.01514803843835560759098
6 208.3980964253975720633538 165.6008220944556672481883
7 486.8291555413566000543864 375.4804004152886797996016
8 1137.260058429224259797968 892.2418753486577354212783
9 2656.703606588566986303095 2064.554606528212648447034

10 6206.209878666071640432711 4849.504943339923099642784
11 14498.05763470071954268293 11293.10916510243643781710
12 33868.2836924334 26429.64958444568607749808
13 79118.2289428612 61675.61597454731
14 184824.664073982 144167.2612085567
15 431760.883879445 336660.4085235824
16 786626.0015010700

Table 2: Maximum eigenvalues for 4-colourings of the square grid

n Pn Cn
2 13
3 42.254746265138 32
4 137.34484848076 114.16796064692
5 446.42629917197 359.90932515034
6 1451.0662111085 1182.6934618883
7 4716.5527439510 3829.1466667249
8 15330.706253905 12464.383871815
9 49831.003080926 40492.334305935

10 161970.93773951 131643.39169572
11 526471.13343803 427861.13442804
12 1390763.1270219

Table 3: Maximum eigenvalues for 5-colourings of the square grid
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B Colouring eigenvalues for the cubic lattice282

n G = Pn G = Cn
3 13.8072589673052 3
4 30.1109468160278 26.6214214843774
5 65.8601729387350 24.6080079665097
6 144.283083091960 123.199451464237
7 316.392676802175 148.219336059660
8 694.239161184508 582.950876259572
9 1523.97594483322 806.285660630712

10 3346.41981099416 2782.03759223168
11 7349.89922843146 4196.30975248900

Table 4: Maximum eigenvalues for 3-colourings of G× P2

n G = Pn G = Cn
3 42.9509955498558 4.56155281280883
4 134.633390548866 114.548378741056
4 423.398960388624 103.444398290072
5 1333.80481197401 1091.43690942498
6 4206.08745616625 1449.29878537714
7 10674.0945361673

Table 5: Maximum eigenvalues for 3-colourings of G× P3

n G = Pn G = Cn
4 607.5008342289296 496.9033949197111
5 2751.292994653581 437.9397858090114
6 12483.36568754961 9768.207310946096

Table 6: Maximum eigenvalues for 3-colourings of G× P4

n G = Pn G = Cn
5 17953.38896417563 1859.891162040439‘

Table 7: Maximum eigenvalues for 3-colourings of G× P5
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n G = Pn G = Cn
2 3
3 4.56155281280883 2
4 6.97196076839709 6.37228132326901
5 10.6828851212084 6
6 16.3920411989578 14.5064314940480
7 25.1740785316175 15.7833418763922
8 38.6831608665319 33.6767869577220
9 59.4651079147947 39.6505660120334

10 91.4379622705829 78.8188645918277
11 140.631735559805 97.5298788390751
12 216.327079158290 185.239857806635
13 332.808012753772 237.182998032027

Table 8: Maximum eigenvalues for 3-colourings of G× C3

n G = Pn G = Cn
2 26.62142148437744
3 114.5483787410569
4 496.9033949197111 420.477039628259
5 2163.237391033718 378.843114768611
6 9435.406059898469 7704.08921920854
7 11291.7201866529
8 144633.687249454

Table 9: Maximum eigenvalues for 3-colourings of G× C4

n G = Pn G = Cn
2 24.6080079665097
3 103.444398290072
4 437.939785809011
5 1859.89116204043 408.155175807023
6 7912.06577168573 6610.84386549256

Table 10: Maximum eigenvalues for 3-colourings of G× C5

n G = Pn G = Cn
6 599243.330687515

Table 11: Maximum eigenvalues for 3-colourings of G× C6
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