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Abstract

The Alon-Roichman theorem states that for every ε > 0 there is a constant
c(ε), such that the Cayley graph of a finite group G with respect to c(ε) log |G|
elements of G, chosen independently and uniformly at random, has expected
second largest eigenvalue less than ε. In particular, such a graph is an expander
with high probability.
Landau and Russell, and independently Loh and Schulman, improved the

bounds of the theorem. Following Landau and Russell we give a simpler proof
of the result, improving the bounds even further. When considered for a general
group G, our bounds are in a sense best possible.
We also give a generalisation of the Alon-Roichman theorem to random

coset graphs.

1 Introduction

We say that a graph X = (V,E) is an (n, d, ε)-expander if it is a graph on n vertices,
with maximum degree at least d, such that for every subset W of its vertices of size
at most n/2, we have |N(W ) \W | > εW , where N(W ) denotes the neighbourhood
of W . The (vertex) expansion constant of X is the largest ε such that X is an
(n, d, ε)-expander.

Expanders have many applications in theoretical computer science. The most useful
ones, are linear expanders: Families of graphs {Xi}i>1 such that each Xi is an
(ni, d, ε)-expander, with d and ε fixed, and ni tending to infinity. Although it is not
difficult to show via probabilistic methods that such families do exist, it has been
quite hard to find explicit examples. Expanders whose degree is polylogarithmic in
the number of vertices have also proved useful.

Alon and Roichman [5] proved that ‘random Cayley graphs are expanders’. Recall
that the Cayley diagram of a group G with respect to a multiset S of elements of
G is the directed multigraph whose vertices are the elements of G and whose set of
(directed) edges is the multiset of all ordered pairs (x, y) such that y = sx for some
s ∈ S. (I.e. if s appears k times in the multiset S, then there are k directed edges
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from x to sx.) Ignoring orientation but retaining multiple edges we get the Cayley
graph X(G,S) of G with respect to S. Note that this graph is 2|S|-regular and it is
connected if and only if S generates G.

One way to show that a graph has a given expansion property is via linear algebra.
Recall that the adjacency matrix A = A(X) of a graph X of order n is the n× n
matrix (with rows and columns indexed by the vertices of X) defined by

Axy =

{

1 if xy is an edge;

0 otherwise.

More generally, if X is a multigraph, then Axy is defined to be the number of edges
joining x and y, where we use the convention that Axx is twice the number of loops at
x. If the graph is d-regular we can also define the normalised adjacency matrix
T = T (X) of X, by T = 1

d
A. Note that T is a real symmetric matrix, so it has an

orthonormal basis of (real) eigenvectors. We’ll write

λ0 > λ1 = λ1(G) > λ2 > . . . > λn−1

for its eigenvalues. (Warning: Some authors use the same notation for the eigenvalues
of the adjacency matrix.) It can be easily checked that λ0 = 1 and |λi| 6 1 for every
i. We will also denote by µ = µ(G) the second largest element of the multiset of the
absolute values of the eigenvalues of T . (I.e. µ = max {|λ1|, |λn−1|}.) The relation
between linear algebra and expansion properties of a graph comes from the following
result of Alon and Milman (see [2, 3, 4]) which essentially says that if µ is bounded
away from 1, then G is a good expander.

Lemma 1 (Alon-Milman [4]). Let X be a d-regular graph on n vertices. Then X
is an (n, d, 2−2λ1

3−2λ1 )-expander. In particular it is an (n, d,
2−2µ
3−2µ)-expander.

Alon and Roichman used random walks on random Cayley graphs to prove the fol-
lowing:

Theorem 2 (Alon-Roichman [5]). For every ε > 0 there is a c(ε) > 0, depending
only on ε such that for every finite group G,

E(µ(X(G,S))) 6 ε,

where S is a multiset of c(ε) log |G| elements of G chosen independently and uniformly
at random.1

It can be easily shown using martingales (see [5]) that µ is concentrated around its
mean. Hence, by Theorem 2 we have:

Theorem 3. For every δ > 0, there is a c′(δ) > 0 depending only on δ, such that for
every finite group G, the Cayley graph X(G,S) is an (n, 2|S|, δ)-expander with high
probability2 as |G| → ∞, where S is a multiset of c′(δ) log |G| elements of G chosen
independently and uniformly at random.
1All logarithms in this paper will be natural, unless otherwise stated.
2Meaning that the probability tends to 1.
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Landau and Russell [9] and independently Loh and Schulman [10] gave new proofs of
Theorem 2, replacing log |G| by logD(G), where D(G) is the sum of the dimensions
of the irreducible representations of the group G. This satisfies

√

|G| < D(G) 6 |G|.
(See the next section for more details.) We will usually write D instead of D(G)
when the choice of G is clear. Landau and Russell also improved the constant c(ε).
Although their proof is correct, they used some tail bounds on operator valued random
variables from a recent paper of Ahlswede and Winter [1] which are unfortunately
flawed. The ln (2) in Lemma 6 and Theorem 19 in [1] should be dropped. These
arose from an unfortunate misuse of the natural logarithm as a base 2 logarithm.
As a consequence, the Landau-Russell method does not prove their claimed bound.
However, using a corrected version of the Ahlswede and Winter result, the new bound
on c(ε) is still better than what was previously known.

We will follow an approach similar to that of Landau and Russell to give a simpler
proof of the following version of Theorem 2.

Theorem 4. For every 0 < ε < 1, there is a function

k = k(D) 6

(
2

ε2
+ o(1)

)

logD

such that for every finite group G,

E(µ(X(G,S))) 6 ε,

where S is a multiset of k elements of G chosen independently and uniformly at
random. The o(1) term is with respect to increasing D.

The expression we get for k is

k =

(

1

H1/2
(
1+ε
2

) + o(1)

)

logD,

where Hp is the weighted entropy function

Hp(x) = x log

(
x

p

)

+ (1− x) log
(
1− x
1− p

)

.

Theorem 4 is an easy corollary of the following theorem.

Theorem 5. Let S be a multiset of k elements of a finite group G chosen independ-
ently and uniformly at random. Then, for every 0 < ε < 1,

Pr(µ(X(G,S)) > ε) 6 2D exp

{

−kH1/2
(
1 + ε

2

)}

.
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Taking k = 1
H1/2((1+ε)/2)

[logD+b+log 2] we get Pr(µ > ε) 6 e−b. Since µ takes values

in [0, 1] we have Eµ 6 (1 − e−b)ε + e−b 6 ε + e−b. To deduce Theorem 4, replace ε
by ε′ = ε(1− δ) and b by − log (εδ) where δ = δ(D) tends to 0 as D tends to infinity
and log 1/δ = o(logD).

As we will see later, Theorem 5 is essentially the best possible theorem one could
have for a general group G. To improve on the theorem, one possibly needs to know
more about the structure of the specific group under consideration.

Recall that a graph X is called vertex transitive if for every two vertices x, y of
X, there is an automorphism φ of X such that φ(x) = y. Cayley graphs are vertex
transitive graphs. However, there are vertex transitive graphs which are not Cayley
graphs, the smallest such graph being the Petersen graph. As Sabidussi [12] observed,
every vertex transitive graph can be obtained using the following construction based
on cosets of a group:

Given a group G and a subgroup H of G, the coset diagram of G modulo H with
respect to a multiset S of elements of G is defined as follows: Its vertices are the
right cosets of H in G, and there is a directed edge from Hx to Hy if and only if
yx−1 ∈ HSH. The multiplicity of each directed edge from Hx to Hy is defined to
be the number of elements s of the multiset S such that yx−1 ∈ HsH. Note that the
definition of the coset diagram is indeed well-defined, i.e. it does not depend on the
choice of representatives for the cosets of H. We can now define the coset graph
X(G,H, S) of G modulo H with respect to the multiset S by retaining multiple edges
and ignoring orientation. It is not difficult to check that X(G,H, S) is a regular graph

of degree 2
∑

s∈S

|HsH|
|H| . Note that if H is a normal subgroup of G, then the Cayley graph

X(G/H,S) is isomorphic to the coset graph X(G,H, S).

As we will see in section 5, using similar ideas as in the proof of Theorem 5 we can
extend Theorem 5 to show that random coset graphs have good expansion properties.

For the reader’s convenience, we recall in Section 2 all the results from representation
theory that we will need. Proofs of the results can be found in many books, for
example in Serre [13]. In Section 3 we give the proof of Theorem 5. In Section 4
we extend Theorem 5 to coset graphs. Finally in Section 5, we discuss some related
results.

2 Some Representation Theory

A representation ρ of a finite group G is a homomorphism ρ : G→ GL(V ), where
V is a vector space over C. The dimension dρ of ρ is simply the dimension of V .
Equip V with an inner product 〈, 〉. One can now replace 〈, 〉 with a new inner product
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〈, 〉′ which is preserved under the action of ρ. Indeed define

〈v, w〉′ = 1

|G|
∑

g∈G
〈ρ(g)v, ρ(g)w〉.

In this way, we may (and we will) consider ρ as a homomorphism into the unitary
group of V .

We say that a subspace W of V is invariant if it is fixed by ρ. (I.e. ρ(g)W ⊆ W
for every g ∈ G.) It is then easily checked that the restriction ρW : G → GL(W )
is a representation. We say that ρ is irreducible if there is no non-trivial invariant
subspace.

Theorem (Complete Reducibility). Any representation ρ can be decomposed into
irreducible representations ρ = ρ1 ⊕ . . .⊕ ρk. (Meaning V =W1 ⊕ . . .Wk where each
Wi is invariant and ρi = ρWi is irreducible.)

We say that two representations ρ : G→ GL(V ) and ρ′ : G→ GL(V ′) are equivalent
if there exists an isomorphism φ : V → V ′ such that the following diagram commutes
for every g ∈ G.

V
φ
�V ′

V

ρ(g)
�

φ
�V ′

ρ′(g)
�

Theorem. A finite group G has only a finite number of irreducible representations
up to equivalence.

Two important representations are the trivial representation 1 : G → GL(C);
g 7→ id and the regular representation R : G → GL(C[G]), where C[G] is the
vector space over C generated by the elements of G, defined by (Rg)(

∑
αhh) =∑

αhgh =
∑
αg−1hh. It is an important fact that R decomposes as

R =
⊕

ρ⊕ · · · ⊕ ρ
︸ ︷︷ ︸

dim ρ

where the sum is over a complete set of inequivalent irreducible representations of
G. In particular, since C[G] has dimension |G|, we deduce that |G| = ∑ (dρ)2. We
define D = D(G) by D =

∑
dρ and observe that

√

|G| < D(G) 6 |G|.

Given a subgroup H of a group G, by restricting to H, we can consider any repres-
entation ρ of G as a representation of H. It could be the case that ρ is an irreducible
representation of G, but when restricted to H is not any more irreducible. We define
D(G,H) to be the sum of the dimensions of the irreducible representations of G
which, when decomposed into irreducible representations of H, do not contain the
trivial representation of H. For example, it is not hard to show that if H is normal
in G, then D(G/H) = D(G,H).
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3 Proof of Theorem 5

Let s1, . . . , sk be elements of G chosen independently and uniformly at random. Let

s =
1

2k

k∑

i=1

(si + s
−1
i )

and observe that the matrix of the linear operator

R(s) =
1

2k

k∑

i=1

(R(si) +R(s
−1
i ))

with respect to the standard basis of C[G] (i.e. {g : g ∈ G}) is just the normalised
adjacency matrix T of X(G,S). But the eigenvalue 1 corresponds to the trivial
representation, so (by the decomposition of R) we deduce that µ = max

ρ
‖ρ(s)‖ where

ρ runs over all irreducible non-trivial representations of G. Here, ‖.‖ denotes the
operator norm, defined by ‖A‖= sup

‖x‖=1
‖Ax‖.

So we are left with estimating ‖ρ(s)‖ for every non-trivial irreducible representation
ρ. Loh and Schulman proceeded via random walks as in the original Alon-Roichman
proof. Landau and Russell used the aforementioned result of Ahlswede and Winter.
Our approach is to use the following version of the Hoeffding-Azuma inequality:

Theorem 6 (Hoeffding [7]). Let X0, X1, . . . , Xn be a martingale such that −ri 6
Xi − Xi−1 6 1 − ri for some constants r1, . . . , rn. Let r = 1

n

n∑

i=1

ri. Then for every

ε > 0,
Pr(|X − EX| > εn) 6 2 exp {−nHr(r + ε)}.

Now fix a non-trivial irreducible representation ρ of G and let Ai be the operator

1
2
[ρ(si)+ρ(s

−1
i )]. Let µ1, . . . , µdρ be the eigenvalues of

1
2

k∑

i=1

Ai, arranged in decreasing

order of magnitude of their absolute values. Let X be an eigenvalue of 1
2

k∑

i=1

Ai chosen

uniformly at random. We have

EX =
1

2dρ

k∑

i=1

E(Tr (Ai)) =
k

2dρ|G|
Tr

(
∑

g∈G
ρ(g)

)

= 0.

Indeed, the matrix of the operator
∑

g∈G
R(g) with respect to the standard basis of C[G]

is the ‘all 1 matrix’. In particular it has rank 1. But so does the matrix of the trivial
representation. Hence, by the decomposition of R,

∑

g∈G
ρ(g) is the zero operator. (If

the reader prefers he can just use the orthogonality relations.)
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We now let Xi = E(X|A1, . . . , Ai) and note that X0, . . . , Xk is a martingale with
|Xi − Xi−1| 6 1

2
for every i. Indeed, arguing as above one shows that Xi − Xi−1 =

Tr(Ai)
2 dim ρ

. But ρ(si) and ρ(s
−1
i ) are unitary operators, hence |Tr(Ai)| 6 dim ρ. Applying

the Hoeffding-Azuma inequality, we deduce that

Pr(|X| > εk) 6 2 exp {−kH1/2(1/2 + ε)}.

In particular, we deduce that

Pr(‖ρ(s)‖> ε) = Pr
(∥
∥
∥
∥
∥

1

k

k∑

i=1

Ai

∥
∥
∥
∥
∥
> ε

)

= Pr

(

|µ1| >
εk

2

)

6

dρ∑

i=1

Pr

(

|µi| >
εk

2

)

= dρ Pr

(

|X| > εk
2

)

6 2dρ exp

{

−kH1/2
(
1 + ε

2

)}

.

Summing over all irreducible non-trivial representations of G completes the proof of
Theorem 5.

In the proof, it was important that we could use the Hoeffding-Azuma inequality to
show that X was concentrated around its expectation. However, what was crucial in
the proof was that we could calculate the expectation of X. If instead we had taken

X to be the second largest eigenvalue of 1
2

k∑

i=1

Ai, then we would still be able to obtain

the same concentration result, however we would have no clue about the expectation
of X.

4 Coset Graphs

Let G be a finite group, H a subgroup of G and S is a multiset of elements of G,
chosen independently and uniformly at random. We want to show that if S is large
enough, then X = X(G,H, S) is a good expander. As before, the aim would be to
deduce this from the spectral properties of X. However, it seems that it is not easy
to show that µ(X) is as small as one would hope for. The following simple lemma
will enable us to deduce that X is a good expander by looking at a related graph Y
for which µ(Y ) can be computed more easily. Recall that a stochastic matrix is a
matrix P with entries in [0, 1] such that the elements in each row of P sum to 1.

Lemma 7. Let X be a d-regular graph on n vertices. Let µ∗ = µ∗(X) be the infimum
of the second largest eigenvalue in absolute value of P , where P runs over all n× n
symmetric stochastic matrices satisfying Pij = 0 whenever T (X)ij = 0. Then X is
an (n, d, 2−2µ

∗

3−2µ∗ )-expander.
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Proof. Immediate if we note that two graphs which have the same underlying simple
graph, have the same expansion constant. Indeed, this observation says that the
lemma is true if the entries of the matrix are rational. We can easily pass to matrices
which also have irrational entries by taking limits.

For further discussion of this lemma, see section 5.3.

So, instead of looking at the spectrum of X, we can look at the spectrum of any
graph Y which has the same underlying simple graph as X. We define Y as follows:
Its vertex set is the set of right cosets of H in G, and the multiplicity of the edge
(Hx,Hy) is the number of possible ways to express y as h1sh2x where h1, h2 ∈ H
and s ∈ S or s−1 ∈ S. Note that Y is 2|H||S|-regular and it has indeed the same
underlying simple graph as H.

We claim that every eigenvalue of Y , is also an eigenvalue of the Cayley graph Y ′

of G with respect to the multiset HSH. This follows from the fact that Y ′ a the
‘blow-up’ of Y . I.e. Y ′ is obtained from Y by replacing each vertex by |H| new
vertices corresponding to the elements of the coset, and replacing each edge by a
K|H|,|H| on the corresponding vertices. Thus, the normalised adjacency matrix of Y

′

can be written up as a |G||H| ×
|G|
|H| matrix of |H| × |H| blocks, with ...... It then easily

follows that if v = (v1, . . . , v|G|/|H|) is an eigenvector of Y with eigenvalue λ, then
v′ = (v1, . . . , v1, . . . , v|G|/|H|, . . . , v|G|/|H|) is an eigenvector of Y

′ with eigenvalue λ.

Thus, in order to show that X is a good expander, it is enough to show that µ(Y ′) is
bounded away from 1.

Theorem 8. With the above notation, we have

Pr(µ(Y ′) > ε) 6 2D(G,H) exp

{

−|S|H1/2
(
1 + ε

2

)}

.

Proof. As in the proof of Theorem 5 we get

Pr(µ(Y ′) > ε) 6
∑

ρ

Pr






∥
∥
∥
∥
∥
∥
∥

ρ






1

2|S||H|2
∑

h1,h2∈H

s∈S

(h1sh2 + h1s
−1h2)






∥
∥
∥
∥
∥
∥
∥

> ε






6
∑

‖ ∑
h∈H

ρ(h)‖6=0
Pr





∥
∥
∥
∥
∥
ρ

(

1

2|S|
∑

s∈S
(s+ s−1)

)∥
∥
∥
∥
∥
>

ε|H|2
‖∑
h∈H
ρ(h)‖2





The result will follow by showing that ‖∑ ρ(h)‖ is equal to |H| or 0, depending on
whether ρ, as a representation of H, contains the trivial representation of H or not.
But if ρ contains the trivial representation of H, then clearly ‖

∑
ρ(h)‖ = |H|, while

if it does not, then it decomposes into a sum of irreducible representations ρi of H
such that each

∑
ρi(h) is the zero operator. This completes the proof.
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5 Further Comments and Results

5.1 Comparison with some lower bounds

Alon and Roichman also showed that if G = Zm2 , S is any subset of elements of G,
and µ(X(G,S)) 6 1− δ, then the following must hold:

∑

i<
δ|S|
4

(|S|
i

)

2m < 2l.

In particular this implies that |S| >
(
1 + Ωm

(
δ log

(
1
δ

)))
m.

The following result, proven by Alon and Roichman for abelian groups, shows that
this lower bound is essentially sharp as an upper bound for every group.

Theorem 9. For every sufficiently small δ > 0, there is an ε = O
(
δ log

(
1
δ

))
such

that for every finite group G, µ(X(G,S)) 6 1 − δ with high probability as D → ∞,
where S is a multiset of (1+ε) log2D, chosen independently and uniformly at random.

Proof. Taking

k =
logD + b+ log 2

H1/2(1− δ/2)
=

2(logD + b+ log 2)

(2− δ) log (2− δ) + δ log δ

we deduce that Pr(µ > 1− δ) 6 e−b and we can then proceed as before. The result
follows by noting that as δ → 0 then

2

(2− δ) log (2− δ) + δ log δ ∼
1

log 2
+
δ log

(
1
δ

)

2(log 2)2
.

Since Theorem 9 is a direct consequence of Theorem 5 and since it is essentially sharp
for G = Zm2 , then in order to improve on Theorem 5 it seems we would have to take
into consideration more of the structure of the group that we are concerned with.

5.2 Ramanujan-like Cayley graphs

It is known (see e.g. [8]) that the second largest eigenvalue of any d-regular graph on
n vertices is at least

2
√
d− 1
d

(

1 +O

((
log d

log n

)2
))

.

This is essentially best possible; there are explicit constructions of Ramanujan
graphs (see e.g. [11]), d-regular graphs with second largest eigenvalue at most 2

√
d−1
d
.

We can show that random Cayley graphs are quite close to being Ramanujan.

Theorem 10. For every δ > 0 and every group G, if S is a set of k elements of G,

chosen independently and uniformly at random, then µ(X(G,S)) 6 (
√
2 + δ)

√
logD
k

with high probability as D →∞.
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Proof. Immediate by Theorem 5 since

Pr

(

µ(X(G,S)) > (
√
2 + δ)

√

logD

k

)

6 2D1−(1+δ/
√
2)2.

Taking k = (logD)r, for some fixed r, we deduce that with high probability, such a

Cayley graph has second eigenvalue at most
√
2+δ√
k
k1/2r.

5.3 Discussion of Lemma 7

In section 4, we used Lemma 7 to pass to a matrix which had easily computable
second largest eigenvalue. We now give two examples where Lemma 7 is used to
improve the bound for the expansion constant.

Example 1. We begin with a connected 3-regular non-bipartite graph X. This
guarantees that µ(X) < 1. It is well known that each 3-regular graph has a perfect
matching. We actually pick X such that it has a perfect matching M whose removal
does not leave a Hamiltonian cycle. We now replace each edge of X not in M by n
new edges to get new graph Xn. Clearly, µ

∗(Xn) 6 µ(X) < 1. On the other hand,
the normalised adjacency matrices of Xn tend to the normalised adjacency matrix of
X \M in the operator norm, say. Since the eigenvalues vary continuously, we deduce
that µ(Xn)→ µ(X \M) = 1 as n→∞.

In the above example, we used Lemma 7 to get a better expansion constant for the
multigraphs Xn than the one given by Lemma 1. However this was in a sense not a
genuine example. All we did was to take a simple graph and produce some multigraphs
with the same adjacencies, which had very bad spectral properties. So now we present
an example of a simple graph X such that we can show that µ∗(X) < µ(X).

Example 2. We take X = K4 × C10. This can be viewed as a Cayley graph of
Z2 × Z2 × Z10. Using the representation theoretic approach of section 3, one can
show that µ(X) = 7+

√
5

10
= 0.9236 . . .. Consider the subgraph Y = C4 × C10 of X.

We give each edge of Y a weight of 6
5
and each other edge a weight of 1

5
to get a

new (weighted) graph Z. Note that Z is a regular graph. It can be checked that
µ∗(X) 6 µ(Z) = 23

25
= 0.92 < µ(X).

When can one use this method to improve the bound for the expansion constant?
In the above example, we had a regular graph X which had some local dense parts
together with some global other structure, and the global structure was responsible
for the expansion of X. Picking a matching Y in each of these local parts and putting
higher weights on the edges of X \ Y we obtained a regular weighted graph Z. Why
should we have µ(Z) < µ(X)? There is a relationship between µ(X) and random
walks on the vertices of X. The smaller µ(X) is, the faster the random walk on
the vertices of X will converge to the normal distribution and vice versa (see e.g. [6,
Chapter IX]). Intuitively, by having less weight in most edges of these dense local parts
(but large weight in some of their edges) we would expect a random walk to spend less
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time in each local part, and hence to converge faster to the uniform distribution. We
believe that in situations like this, where we have better local expansion properties
than globally, one has a fairly good chance to be able to use Lemma 7 to deduce a
better bound for the expansion properties for the graph X.
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