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Abstract

In this paper we introduce new models of random graphs, arising from Latin
squares which include random Cayley graphs as a special case. We investigate
some properties of these graphs including their clique, independence and chro-
matic numbers, their expansion properties as well as their connectivity and
Hamiltonicity. The results obtained are compared with other models of ran-
dom graphs and several similarities and differences are pointed out. For many
properties our results for the general case are as strong as the known results
for random Cayley graphs and sometimes improve the previously best results
for the Cayley case.

1 Introduction

The concept of random graphs is a very important notion in combinatorics. Although
there are several models of random graphs, by a random graph one usually refers to
the model G (n, p), the probability space of all graphs on [n] in which every edge
appears independently with probability p. For standard results on random graphs we
refer the reader to the textbooks of Bollobás [7] and Janson,  Luczak and Ruciński [14].

In this paper, we introduce new models of random graphs and study some of their
properties with particular interest in their relation to the model G (n, p). Our models
arise from Latin squares. Given a group, one can obtain Latin squares by considering
its multiplication table or its division table. It turns out that the random graph
obtained by the division table of a group G, is exactly the random Cayley graph of
G (with respect to a random subset S of G.)

Before defining our models, let us recall that a Latin square of order n is an n× n
matrix L with entries from a set of n elements, such that in each row and in each
column, every element appears exactly once. Given a Latin square L with entries in
a set A of size n, and a subset S of A, we define the Latin square graph G(L, S)
on vertex set [n], by joining i to j if and only if either Lij ∈ S, or Lji ∈ S.

Suppose we are given a sequence (Ln) of Latin squares of order n, with entries in
[n], say. Choosing S ⊆ [n] by picking its elements independently at random with
probability p, we obtain a random Latin square graph G(Ln, S). We denote this
model of random Latin square graphs by G (Ln, p). A related model is obtained by
choosing a multiset S of k elements of [n] by picking its elements independently and
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unifomly at random (with replacement). We denote this model by G (Ln, k). Note
that our underlying graphs are simple. However, for the model G (Ln, k) it will be
convenient for some of our results to retain multiple edges and loops. When we do
this, we will denote this new model by Gm(Ln, k). To be more explicit, in this model
the number of edges joining i to j is exactly the total number of times that Lij and
Lji appear in S. In particular, every G ∈ Gm(Ln, k) is a 2k-regular multigraph.

A similar model is obtained by looking at the complement of the graph G ∈ G (Ln, p).
We denote this model by Ḡ (Ln, p). In general, this model is not the same as G (Ln, 1−
p), the reason being that Lij is not necessarily equal to Lji. However, usually it is
not too difficult to translate results from one model into the other, so we will only
concentrate on G ∈ G (Ln, p).

Note that, as mentioned above, our models include random Cayley graphs as a special
case. Indeed, given a group G, consider the Latin square L defined by Lxy = xy−1.
Then, given any subset S of elements of G, the Latin square graph G(L, S) is exactly
the Cayley graph of G with respect to S. The multiplication table of a group is also a
Latin square, giving rise to what is usually known (motivated by the abelian case) as
a Cayley sum graph. So this model includes random Cayley sum graphs as well.

We should mention here that there are several differences between random Cayley
graphs and our more general models of random Latin square graphs. For example,
random Cayley graphs are always vertex transitive. On the other hand a random
Latin square graph, even if it arises from the multiplication table of a (non-abelian)
group, might not even be regular. However, it is easy to see that random Latin
square graphs are not far from being regular in the sense that the ratio of maximum
to minimum degree is bounded above by 2.

The fact that random Latin square graphs are almost regular (in the above sense)
motivates also the comparison of our models with Gn,r, the probability space of all
r-regular graphs on n vertices taken with the uniform measure. (As usual, it is always
assumed that rn is even.)

Sometimes, it is easier to work with random Cayley graphs or random Cayley sum
graphs for abelian groups, rather than random Latin square graphs. This is because
we always have Lij = L−1

ij in the case of Cayley graphs, and Lij = Lji in the case
of Cayley sum graphs, and so dependences between the edges can be easier to deal
with. This sometimes leads to sharper results for the first two families of random
graphs than for general random Latin square graphs; however we have opted to state
our results only in the general case of random Latin square graphs.

It seems that the general class of random graphs arising from Latin squares have
not been studied before. However there has been much interest in random Cayley
graphs and random Cayley sum graphs. For example, Agarwal, Alon, Aronov and
Suri [1] established an upper bound on the clique number of random Cayley graphs
arising from cyclic groups and used it to construct visibility graphs of line segments in
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the plane which need many cliques and complete bipartite graphs to represent them.
In their study of a communication problem, Alon and Orlitsky [5] proved a similar
upper bound for random Cayley graphs arising from abelian groups of odd order.
Green [12], using number theoretic tools, studied the clique number of various Cay-
ley sum graphs and showed that some of them are good examples of Ramsey graphs
while others are not. The diameter of random Cayley graphs with logarithmic degree
was studied by Alon, Barak and Manber in [2]. Alon and Roichman [6] proved that
random Cayley graphs (on sufficiently many generators) are almost surely expanders,
a result which was later improved by several authors [18, 19, 8]. The fact that random
Cayley graphs are expanders has several consequences for the diameter, connectivity
and Hamiltonicity of such graphs. Finally, some other aspects of the diameter, con-
nectivity and Hamiltonicity of random Cayley graphs and random Cayley digraphs
were studied in [23, 22, 20, 21].

In this paper we extend many of these resutls to the general case of random Latin
square graphs and show that the structure of the Latin squares have a non-trivial
influence on many properties of random Latin square graphs. In Section 2 we state
and discuss our main results regarding random Latin square graphs. We prove these
results in Section 3, Section 4 and Section 5. In Section 6 we give further examples
and open problems.

2 Statements and discussion of the results

In this section, we list our main results and make a few comments about them,
comparing them with the corresponding results in the G (n, p) and Gn,r models. In
Subsection 2.1, we will be interested in the maximum size of cliques and independent
sets in Gn,p, as well as the chromatic number of Gn,p and its complement. In Sub-
section 2.2, we will be interested in the expansion properties of random Latin square
graphs as well as several consequences of these properties regarding connectivity and
Hamiltonicity. For the results of this subsection it will be easier to work in the the
models Gm(Ln, k) and G (Ln, k).

2.1 Cliques, independent sets and colouring

We begin with an upper bound on the clique number of random Latin square graphs.
It is well known that the clique number of G (n, 1/2), is whp asymptotic to 2 log2 n.
For the case of dense random regular graphs, it was proved in [17] that the clique
number of Gn,n/2 is whp asymptotic to 2 log2 n.

Guided by the above results, one might hope to prove that the clique number of
G (Ln, 1/2) is whp Θ(log n). However, it turns out that this is not the case. Green [12]
proved that the clique number of the random Cayley sum graph on Zm

2 , with p = 1/2,
is whp Θ(log n log log n), where n = 2m = |Zm

2 |. In the same paper, Green proved
that the clique number of the random Cayley sum graph on Zn, with p = 1/2, is whp
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Θ(log n). This shows that, in general, results about the model G (Ln, p) can depend
on the actual sequence of Latin squares chosen.

To the best of our knowledge, the best known general result on the clique number is
due to Alon and Orlitsky [5], which says that the clique number of a random Cayley
graph arising from an abelian group of odd order n is whp O((log n)2). Using similar
methods, we have managed to show that the same bound is in fact true for random
Latin square graphs. In particular, it is also true for random Cayley graphs arising
from non-abelian groups. We believe but cannot prove that the 2 in the exponent
can be reduced further.

Theorem 1 (Clique number; upper bound). Let 0 < p < 1 be a fixed constant and
let d = 1/(2p− p2). Then, for almost every G ∈ G (Ln, p), we have

cl(G) 6 27 (logd n)2 .

Since the model Ḡ (Ln, p) is different from G (Ln, 1−p), we cannot immediately deduce
a corresponding upper bound for the independence number. One way to find such
a bound is to couple the model Ḡ (Ln, p) with G (Ln, 1 − p), and use Theorem 1 to
deduce that for almost every G ∈ G (Ln, p),

α(G) = cl(Ḡ) 6 27
(
log1/(1−p2) n

)2
.

In fact, using an argument similar to the one used in the proof of Theorem 1, we can
obtain a slightly better result.

Theorem 2 (Independence number; upper bound). Let 0 < p < 1 be a fixed constant
and let d = 1/(1− p). Then, for almost every G ∈ G (Ln, p), we have

α(G) 6 27 (logd n)2 .

Recall that the (vertex) clique cover number θ(G) of a graph G is the smallest
integer k such that the vertex set of G can be partitioned into k cliques. I.e. θ(G) =
χ(Ḡ). So an immediate corollary of Theorem 1 is:

Corollary 3 (Clique cover number; lower bound). Let 0 < p < 1 be a fixed constant
and let d = 1/(2p− p2). Then, for almost every G ∈ G (Ln, p), we have

θ(G) >
n

27 (logd n)2 .

Similarly, Theorem 2 implies:

Corollary 4 (Chromatic number; lower bound). Let 0 < p < 1 be a fixed constant
and let d = 1/(1− p). Then, for almost every G ∈ G (Ln, p), we have

χ(G) >
n

27 (logd n)2 .
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We now move to our upper bound on the chromatic number of random Latin square
graphs. Recall that for constant p, the chromatic number of G (n, p) is whp asymp-
totic to n

2 logb n
, where b = 1/(1 − p). A similar behaviour was proved in [17] for the

case of random regular graphs of high degree. More specifically, it was proved that
for any ε > 0, if εn 6 r 6 0.9n, then the chromatic number of Gn,r is whp asymptotic
to n

2 logb n
, where b = n/(n− r).

For the case of random Latin square graphs, we prove an upper bound of the same
order of magnitude. However, since our lower bound is only of order n

(logb n)2
, we still

do not have a sharp asymptotic result for the chromatic number. In fact, as in the
case of the clique and independence numbers, we know that the chromatic number
can depend on the sequence of Latin squares chosen. For example, the result of
Green [12] mentioned above, that the independence number of the random Cayley
sum graph on Zn (with p = 1/2) is whp Θ(log n), provides a lower bound for the
chromatic number of these graphs which is of the same order of magnitude as our
corresponding upper bound. On the other hand, we claim that the chromatic number
of the random Cayley sum graph on Zm

2 is whp Θ( n
log n log log n

), where n = 2m = |Zm
2 |.

The lower bound follows immediately from the result of Green [12] mentioned above
for the independence number of these graphs. The upper bound does not follow
directly from that result, however it follows from its proof in [12] that in fact there is
whp a blog m + log log m− 1c-dimensional subspace of Zm

2 which is an independent
set. Indeed, given this result, it follows that whp, a random Cayley sum graph on
Zm

2 can be partitioned into at most 4n
log n log log n

independent sets of this form.

In fact, our upper bound on the chromatic number will be an immediate consequence
of an upper bound on the list-chromatic number. Recall that the list-chromatic
number χl(G) of a graph G is the smallest positive integer k such that for any
assignment of k-element sets L(v) to the vertices of G, there is a proper vertex
colouring c of G with c(v) ∈ L(v) for every vertex v of G.

Theorem 5 (List-chromatic number; upper bound). Let 0 < p < 1 be a fixed constant
and let d = 1/(1− p). Then, for almost every G ∈ G (Ln, p), we have

χl(G) 6
n

1
4

logd n− 1
2

logd logd n− 2
.

Corollary 6 (Chromatic number; upper bound). Let 0 < p < 1 be a fixed constant
and let d = 1/(1− p). Then, for almost every G ∈ G (Ln, p), we have

χ(G) 6
n

1
4

logd n− 1
2

logd logd n− 2
.

With similar methods we will show the following upper bound for the clique cover
number.

Theorem 7 (Clique cover number; upper bound). Let 0 < p < 1 be a fixed constant
and let d = 1/p. Then, for almost every G ∈ G (Ln, p), we have

θ(G) 6
n

1
2

logd n− log logd n− 6
.
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From Theorem 6 and Theorem 7 we deduce corresponding lower bounds on the inde-
pendence and clique numbers.

Corollary 8 (Independence number; lower bound). Let 0 < p < 1 be a fixed constant
and let d = 1/(1− p). Then, for almost every G ∈ G (Ln, p), we have

α(G) >
1

2
logd n− log logd n− 6.

Corollary 9 (Clique number; lower bound). Let 0 < p < 1 be a fixed constant and
let d = 1/p. Then, for almost every G ∈ G (Ln, p), we have

cl(G) >
1

4
logd n− 1

2
logd logd n− 2.

2.2 Expansion and related properties

Alon and Roichman [6] proved that random Cayley graphs on logarithmic number
of generators are expanders whp. Our main result of this subsection states that a
similar result holds in the case of random Latin square graphs.

Before stating our result we need to introduce some notation. Given a multigraph G,
its adjacency matrix is the 0,1 matrix A = A(G) with rows and columns indexed
by the vertices of G, in which Axy is the number of edges in G joining x to y. If
G is d-regular then its normalised adjacency matrix T = T (G) is defined by
T = 1

d
A. Note that T is a real symmetric matrix, so it has an orthonormal basis of

real eigenvectors. We will write λ0 > λ1 > . . . > λn−1 for the eigenvalues of T . It is
easy to check that λ0 = 1 and that λn−1 > −1. We will write µ for the second largest
eigenvalue in absolute value, i.e. µ = max {|λ1|, |λn−1|}.

Finally, for 0 < x < 1, we define

H(x) = x log (2x) + (1− x) log (2(1− x)),

where we use the convention that all logarithms are natural.

We can now state our main theorem.

Theorem 10 (Second eigenvalue). Let L be an n×n Latin square with entries in [n]
and let G ∈ Gm(L, k). Then, for every 0 < ε < 1,

Pr(µ(G) > ε) 6 2n exp

{
−kH

(
1 + ε

2

)}
6 2n exp

{
−kε2

2

}
.

We remark that if L is the difference table of a group, then the above theorem is similar
to the result of Alon and Roichman mentioned in the beginning of this subsection.
The only difference is that the bounds appearing in the above theorem, are the same
as the bounds appearing in the authors’ proof [8] of the Alon-Roichman theorem and
are slightly better than the original bounds of the Alon-Roichman theorem.
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Recall that a graph G is an (n, d, ε)-expander if it is a graph on n vertices with
maximum degree d such that for every subset W of its vertices of size at most n/2
we have |N(W ) \W | > ε|W |, where N(W ) denotes the neighbourhood of W . Note
that for this definition we may ignore any multiple edges or loops that G may have.
For more on expander graphs and their applications, we refer the reader to the recent
survey of Hoory, Linial and Wigderson [13].

It is well known [25, 4] that a small second eigenvalue implies good expansion prop-
erties. The following corollary is an immediate consequence of Theorem 10 together
with this fact.

Corollary 11 (Expansion). For every δ > 0, there is a c(δ) > 0 depending only on δ,
such that almost every G ∈ Gm(Ln, c(δ) log n) is an (n, 2c(δ) log n, δ)-expander.

The fact that the second eigenvalue of the graph is small implies that such a graph
has several properties that many ‘random-like’ graphs possess. Informally, a graph of
density p is pseudorandom if its edge distribution resembles the edge distribution of
G (n, p). The study of pseudorandom graphs was initiated by Thomason in [26, 27].
Chung, Graham and Wilson [10] showed that many properties that a graph may
possess, including the property of having small second eigenvalue, are in some sense
equivalent to pseudorandomness.

Here we list just a few of these consequences, mostly taken from the recent survey of
Krivelevich and Sudakov [16]. We omit some of the proofs, but we note that some
care needs to be takne since our graphs are multigraphs, while the result in the survey
are stated only for simple graphs.

To begin with, let us consider what value of k guarantees that almost every G ∈
G (Ln, k) is connected. Let us first recall the corresponding results in G (n, p) and
Gn,r. It is well known that for any fixed δ > 0, if p 6 (1− δ) log n/n, then G (n, p) is
whp disconnected, while if p > (1 + δ) log n/n, then G (n, p) is whp connected. On
the other hand, Gn,r is whp connected provided that r > 3.

So what is the right threshold for the connectivity of random Latin square graphs?
Once again this depends on the sequence (Ln) of Latin squares chosen. For example,
the Cayley graph of Zq for q prime, with respect to any set S containing a non-trivial
element is connected. On the other hand, the Cayley graph of G = Zm

2 with respect
to any set of size less than m = log2 |G| is disconnected. Here, we prove that choosing
slightly more elements are enough to guarantee whp the connectedness not only of
the random Cayley graph of Zm

2 but in fact the connectedness of any random Latin
square graph.

Theorem 12 (Connectedness). For any fixed δ > 0, almost every G ∈ G (Ln, (1 +
δ) log2 n) is whp connected.

Let us now move to the vertex connectivity of random Latin square graphs. Recall
that the vertex connectivity κ(G) of a graph G is the minimal number of vertices
that we need to remove in order to disconnect G. Clearly the vertex connectivity of
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any graph is at most its minimum degree δ(G). It is well known that for G ∈ G (n, p)
we have κ(G) = δ(G). Recently, it was shown in [17, 11] that the same holds for
random r-regular graphs provided 3 6 r 6 n − 4. In our case, the Cayley graphs
on Zm

2 show that no such result can hold if the generating set S has size less than
log2 n. Can we expect that such a result holds if the size of S is large enough? As
the following example shows the answer is no.

Example. Define a Latin square L on {0, 1, . . . , r − 1} × {0, 1} with entries in
{0, 1, . . . , 2r − 1} as follows:

L(x,0),(y,0) =

{
x + y if x 6 y

x + y + r if x > y

L(x,0),(y,1) =

{
x + y + r if x 6 y

x + y if x > y

L(x,1),(y,0) =

{
x + y + r if x 6 y

x + y if x > y

L(x,1),(y,1) =

{
x + y if x 6 y

x + y + r if x > y

Here, addition is done modulo 2r. It can be easily checked that L is indeed a Latin
square. Pick any S ⊆ {0, 1, . . . , 2r − 1} and let G = G(L, S). Note that G is
d-regular for some d. Note also that for any x ∈ {0, 1, . . . , r − 1}, we have that
NG((x, 0)) \ {(x, 1)} = NG((x, 1)) \ {(x, 0)}, where NG denotes the neigbourhood of a
vertex in G. But then, if (x, 0) is adjacent to (x, 1) for some x, and G is not complete,
we have that κ(G) 6 d− 1. Indeed, NG((x, 0)) \ {(x, 1)} is a disconnecting set of size
d− 1. Now (x, 0) is adjacent to (x, 1) if and only if 2x + r ∈ S. Let p = p(r) ∈ (0, 1)
be chosen such that pr →∞ and (1−p)r →∞ as r →∞ and choose S by picking its
elements independently at random with probability p. Then whp G is not complete
and there is an x such that (x, 0) is adjacent to (x, 1) and so κ(G) 6 δ(G)− 1.

The above example shows that even if the size of S is large enough the vertex connec-
tivity of a random Latin square qraph can be whp strictly smaller than its minimum
degree. However, our next theorem shows that if S is large enough then the ver-
tex connectivity of a random Latin square graph is whp at most one less than its
minimum degree.

Theorem 13 (Vertex connectivity). There is an absolute constant C 6 168 such
that whenever C log n 6 k 6 n/4, then δ(G) − 1 6 κ(G) 6 δ(G) for almost every
G ∈ G (Ln, k).

The example of Zm
2 shows that we cannot take C to be equal to 1. It would be

interesting to know whether every C strictly larger than 1 works or not. It seems
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that our proof cannot bring the value of C down to 1 + δ for any δ > 0, so we have
not tried to optimize the value of C that our proof gives.

It should be noted that above result is not a direct consequence of the expansion
properties of random Latin square graphs. From Theorem 10, we can only deduce
that µ = O(

√
log n/k). However one can construct examples of d-regular graphs on

n vertices, with d = Ω(log n), µ = Ω(
√

log n/d) but κ(G) 6 d − Ω(log n). We refer
the reader to the discussion following [16, Theorem 4.1] for more details about how
one can construct such a graph.

Similar to the vertex connectivity, the edge connectivity λ(G) of a graph G is the
minimal number of edges that we need to remove in order to disconnect G. It is
easy to show that κ(G) 6 λ(G) 6 δ(G). Hence, Theorem 13 applies with κ(G)
replaced by λ(G). In fact, our next theorem shows that we can do a bit more. If
|S| > (1 + δ) log2 n then whp the edge connectivity is equal to the minimum degree
of G. In view of random Cayley graphs on Zm

2 , this is in fact best possible.

Theorem 14 (Edge connectivity). For any δ > 0, if L is an n×n Latin square with
entries in [n] and S is a set of (1 + δ) log2 n elements of [n], chosen independently
and uniformly at random, then whp, λ(G(L, S)) = δ(G(L, S)).

Another graph property which follows from pseudorandomness is that of Hamiltonic-
ity. Again, this property depends on the structure of the Latin square. For example,
the Cayley graph of Zq for q prime, with respect to any non-trivial element is Hamil-
tonian. On the other hand, as it was mentioned earlier, the Cayley graph of G = Zm

2

with respect to any set of size less than m = log2 |G| is not even connected. A very
appealing conjecture attributed to Lovasz, states that every connected Cayley graph
is Hamiltonian. This would imply for example that every random Cayley graph on
(1 + δ) log2 n generators is Hamiltonian. However, even this consequence is still not
known. Recently, Krivelevich and Sudakov [15] proved that every d-regular graph on
n vertices satisfying

µ 6
(log log n)2

1000 log n(log log log n)
,

is Hamiltonian, provided n is large enough. Using this, together with the proof
technique of the Alon-Roichman theorem, they proved that a random Cayley graph
on O((log n)5) generators is whp Hamiltonian. Here, we extend this result to random
Latin square graphs as well. Moreover, using Theorem 10 directly, we can in fact
replace (log n)5 by (log n)3.

Theorem 15 (Hamiltonicity). Let k = (log n)3(log log log n)2

(log log n)2
ω(n), where ω(n) is any

function of n which tends to infinity as n tends to infinity. Then almost every G ∈
G (Ln, k) is Hamiltonian.
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3 Cliques and independent sets

We begin by finding upper bounds for the clique number of random Latin square
graphs. Naturally, one would like to find a good upper bound for the expected number
of d-cliques of a random Latin square graph, and from this deduce a corresponding
upper bound for the clique number. Given A ⊆ [n] let A′ = {Lij : i, j ∈ A, i 6= j}. If
|A| = d, then |A′| can be as large as

(
d
2

)
and as small as d− 1. In the former case, the

probability that A forms a clique in G (Ln, p) is (2p − p2)(
d
2). However, in the latter

case, this probability is at least pd−1. So, unless one is able to bound the number of
A ⊆ [n] for which |A′| is relatively small, then this approach cannot give any good
bounds. Our approach will be to show that any A ⊆ [n] of size d, has a subset B of
size Ω(

√
d), such that |B′| is relatively large, i.e. Ω(|B|2). By standard arguments

it will then follow that whp (if d is large enough,) no such B forms a clique, and
hence no A ⊆ [n] of size d forms a clique. Before stating our main lemma, we need
to introduce some more notation.

n2(A) = |{{i, j} : i, j ∈ A distinct and Lij = Lji}|;

n3(A) = |{(i, j, k) : i, j, k ∈ A distinct and Lij = Ljk}|;

n4(A) = |{{(i, j), (k, l)} : i, j, k, l ∈ A distinct and Lij = Lkl}|.

If x ∈ A′ appears exactly rx times as Lij for distinct i, j ∈ A, then, with the above
notation, we have

n2(A) + n3(A) + n4(A) =
∑
x∈A′

(
rx

2

)
.

We are now ready to state and prove our main lemma.

Lemma 16. Let A be a set of elements of X of size a. Then for every b 6 a, A
contains a subset B of size b such that

|B′| > b(b− 1)

(
1− b− 2

a− 2
− (b− 2)(b− 3)

2(a− 3)

)
− n2(B).

Proof. For any B ⊆ A of size b, we have

|B′| = b(b− 1)−
∑
x∈B′

(rx − 1)

> b(b− 1)−
∑
x∈B′

(
rx

2

)
= b(b− 1)− n2(B)− n3(B)− n4(B).

Picking B at random from all b element subsets of A, we have

E(n3(B)) = n3(A) b(b−1)(b−2)
a(a−1)(a−2)

; and

E(n4(B)) = n4(A) b(b−1)(b−2)(b−3)
a(a−1)(a−2)(a−3)

.
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Fixing distinct i, j ∈ A, there is exactly one k ∈ [n] such that Lij = Ljk, hence
n3(A) 6 a(a − 1). Similarly, fixing distinct i, j, k ∈ A, there is exactly one L ∈ [n]

such that Lij = Lkl, hence n4(A) 6 a(a−1)(a−2)
2

. It follows that

E(|B′|+ n2(B)) > b(b− 1)

(
1− b− 2

a− 2
− (b− 2)(b− 3)

2(a− 3)

)
,

and hence there is a choice of B satisfying the requirements of the lemma.

We can now prove Theorem 1.

Proof of Theorem 1. Let d = 1/(2p − p2), let b = 3 logd n and let a = 3b2. Pick any
A ⊆ [n] of size a. By Lemma 16, there is a B ⊆ A of size b, such that

|B′| > 5

6
b2 − n2(B) + O(b).

Pick |B′| pairs (i, j) in B×B, with i 6= j, such that all Lij are distinct. Suppose that
for exactly k of the pairs we have Lij = Lji. It follows that there are at least

(|B′| − k)−
((

b

2

)
− n2(B)

)
=

1

3
b2 − k + O(b),

sets {i, j}, such that both (i, j) and (j, i) have been chosen (and so Lij 6= Lji).
Therefore, the probability that B is a clique is at most

pk
(
2p− p2

) 1
3
b2−k+O(b)

6
(
2p− p2

) 1
3
b2+O(b)

.

So the expected number of cliques B ⊆ [n] of size b with |B′| > 5
6
b2 − n2(B) + O(b)

is at most (
n

b

)(
2p− p2

) 1
3
b2+O(b)

6
1

b!

(
n
(
2p− p2

) 1
3
b+O(1)

)b

= o(1).

Thus, by Markov’s Inequality, we deduce that whp, no such B exists. By Theorem 16,
it now follows that whp, there is no clique of size 3b2, as required.

In a similar way, we can prove the upper bound for the independence number.

Proof of Theorem 2. Let b = 3 log1/(1−p) n, and let a = 3b2. Pick any A ⊆ [n] of size
a. By Lemma 16, there is a B ⊆ A of size b, such that

|B′| > 5

6
b2 − n2(B) + O(b) >

1

3
b2 + O(b).

Therefore, the probability that B is an independent set, is at most (1 − p)b2/3+O(b),
and so the expected number of independent sets is(

n

b

)
(1− p)b2/3+O(b) 6

1

b!

(
n(1− p)b/3+O(1)

)b
= o(1).

Thus, by Markov’s Inequality, we deduce that whp, no such B exists. By Theorem 16
it now follows that whp, there is no independent set of size 3b2, as required.
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4 Colouring

We now move to the proof of the upper bounds on the chromatic number. Before
presenting our proof, let us see why a standard approach from the theory of random
graphs does not seem to generalise in a straightforward manner.

Suppose we could show that whp, every induced subgraph of G ∈ G (Ln, 1/2) on
n1 = n/(log n)2 vertices has an independent set of size at least s1 = (2 − ε) log2 n.
It then follows immediately that whp, the chromatic number is at most n/s1 +
n1 ∼ n/2(log2 n). To do this, one usually shows that the probability that a given
induced subgraph on n1 vertices does not contain an independent set of size s1 is
O(exp

{
−n1+δ

}
), for some δ > 0. However in our model, this is far from being true.

In fact, the probability that G ∈ G (Ln, 1/2) is empty is 2−n, which is much larger
than O(exp

{
−n1+δ

}
). It turns out that this problem can be rectified by using the

expansion properties of the graph G. We refer the reader to [3] to see how one can
do this. Here, we will use a different approach from which we can obtain a better
constant in the bound.

Another approach for finding an upper bound for the chromatic number, is to analyse
the greedy algorithm. This is the approach that we are going to use. This approach
will in fact give an upper bound on the list-chromatic number as well. However, we
need to modify the standard argument, because of the dependencies in the appearance
of edges. In our modification we will make use of Talagrand’s Inequality [24]. We will
use the following version taken (essentially) from [14].

Talagrand’s Inequality. Let X be a non-negative integer valued random variable, not
identically 0, which is determined by n independent random variables and let M be
a median of X. Suppose also that there exist K and r such that

1. X is K-Lipschitz. I.e. changing the outcome of one of the variables, changes
the value of X by at most K.

2. For any s, if X > s, then there is a set of at most rs of the variables, whose
outcome certifies that X > s.

Then

Pr(|X −M | > t) 6

{
4 exp

{
− t2

8rK2M

}
if 0 6 t 6 M ;

2 exp
{
− t

8rK2

}
if t > M.

In particular, it follows that,

|EX −M | 6 E|X −M | =

∫ ∞

0

Pr(|X −M | > t) dt

6 4

∫ M

0

exp

{
− t2

8rK2M

}
dt + 2

∫ ∞

M

exp

{
− t

8rK2

}
dt

6 2K
√

8πrM + 16rK2.

12



Since also M = 2M Pr(X > M) 6 2EX, we deduce that for 0 6 t 6 EX

Pr
(
|X − EX| > t + 16rK2 + 16K

√
rEX

)
6 4 exp

{
− t2

16rK2EX

}
.

This is the form of Talagrand’s Inequality that we will be using.

Let us now proceed to the proof of Theorem 5.

Proof of Theorem 5. Let d = 1/(1−p) and let u = 1
4

logd n− 1
2

logd logd n−2. Suppose
every vertex v has a list L(v) of size bn/uc. Fix an ordering v1, . . . , vn of the vertices.
Suppose we are given a (not necessarily proper) colouring c of vertices v1, . . . , vm, such
that c(vi) ∈ L(vi) for each 1 6 i 6 m. Suppose L(vm+1) = {x1, . . . , xbn/uc}, let ci =
ci(m) be the number of times that colour xi is used on vertices v1, . . . , vm and let Am+1

be the event that vm+1 has an earlier neighbour in every colour of the list L(vm+1).
We claim that Pr(Am+1) = o(1/n). Having proved this, we proceed by list-colouring
the graph greedily. The probability that this fails is at most

∑n
m=1 Pr(Am) = o(1),

so by Markov, we have whp χl(G) 6 n/u.

To prove our claim, let Bi = Bi(m) be the event that vm+1 is joined with an earlier
vertex of colour xi. Then clearly Pr(Bi) 6 1 − (1 − p)2ci . Let Y be the number of
colours in L(vm+1) appearing on earlier neighbours of vm+1. Then

EY 6
n

u
−
∑

(1− p)2ci 6
n

u
− n

u
(1− p)2mu/n 6

n

u

(
1− (1− p)2u

)
,

where the second inequality follows from the Arithmetic-Geometric Mean Inequality.
Let X = Y − EY + n

u
(1 − (1 − p)2u) and let t = cn

u
(1 − p)2u, for some 0 < c < 1 to

be determined later. Then X satisfies the conditions of Talagrand’s Inequality with
K = 2 and r = 1. Note that, for n large enough, 0 6 t 6 EX, so

Pr

(
|X − EX| > c

n

u
(1− p)2u + 64 + 32

√
n

u
(1− (1− p)2u)

)
6

4 exp

{
−c2n(1− p)4u

64u

}
= 4 exp

{
−c2n (logd n)2

64u(1− p)4

}
6

4 exp

{
− c2 log n

16(1− p)8 log (1/(1− p))

}
.

By elementary calculus, it is easy to show that 16x8 log (1/x) 6 2/e whenever 0 <
x < 1. Hence, choosing any c with

√
2/e < c < 1, we deduce that

Pr

(
|X − EX| > c

n

u
(1− p)2u + 64 + 32

√
n

u
(1− (1− p)2u)

)
= o(1/n).

In particular, since Y 6 X,

Pr

(
Y >

n

u
− c

n

u
(1− p)2u + 64 + 32

√
n

u

)
= o(1/n).

13



Since
n

u
(1− p)4u =

(logd n)2

u(1− p)8
→∞,

we deduce that (for n large enough,)

Pr(Am+1) = Pr(Y > bn/uc) = o(1/n).

Similarly, we can give an upper bound to the clique cover number.

Proof of Theorem 7. Let d = 1/p and let u = 1
2

logd n−logd logd n−6. Fix an ordering
of the vertices. Suppose we are given a not necessarily proper colouring of the first
m vertices of Ḡ, using colours 1 up to bn/uc. Let ci = ci(m) be the number of times
colour i is used and let Am+1 be the event that the (m+ 1)-th vertex has a neighbour
in every colour. We claim that Pr(Am+1) = o(1/n). Having proved this, we colour
the graph greedily. The probability that we need more than bn/uc colours is at most∑n

m=1 Pr(Am) = o(1), so by Markov, we have whp θ(G) = χ(Ḡ) 6 n/u.

To prove our claim, let Bi = Bi(m) be the event that the (m + 1)-th vertex is joined
(in Ḡ,) with an earlier vertex of colour i. Then clearly Pr(Bi) 6 1−pci . Let Y be the
number of colours appearing on earlier neighbours of the (m + 1)-th vertex. Then

EY 6
n

u
−
∑

pci 6
n

u
− n

u
pmu/n 6

n

u
(1− pu) .

Let X = Y − EY + n
u
(1− pu) and let t = cn

u
pu, for some 0 < c < 1 to be determined

later. Then X satisfies the conditions of Talagrand’s Inequality with K = 2 and
r = 1. Note that, for n large enough, 0 6 t 6 EX, so

Pr

(
|X − EX| > c

n

u
pu + 64 + 32

√
n

u
(1− pu)

)
6

4 exp

{
−c2np2u

64u

}
6 4 exp

{
− c2 log n

32p12 log (1/p)

}
.

But 32x12 log (1/x) 6 8/(3e) < 1 whenever 0 < x < 1. Hence, choosing any c with√
8/3e < c < 1, we deduce that

Pr

(
|X − EX| > c

n

u
pu + 64 + 32

√
n

u
(1− pu)

)
= o(1/n).

In particular, since Y 6 X,

Pr

(
Y >

n

u
− c

n

u
p2u + 64 + 32

√
n

u

)
= o(1/n).

Since
n

u
p2u =

(logd n)2

up12
→∞,

we deduce that (for n large enough,)

Pr(Am+1) = Pr(Y > bn/uc) = o(1/n).

14



5 Expansion and consequences

We now proceed to the expansion properties of random Latin square graphs and to the
proof of Theorem 10 on the second eigenvalue of such graphs. In [8], we generalized
Hoeffding’s inequality, to an inequality where the random variables do not necessarily
take real values, but instead take their values in the set of (self-adjoint) operators of
a (finite dimensional) Hilbert space. We then used this inequality to give a new proof
of the Alon-Roichman theorem. The main tool in the proof of Theorem 10 will be this
Operator Hoeffding Inequality. Before stating the inequality, we need to introduce
some more notation.

Let V be a Hilbert space of dimension d, let A(V ) be the set of self adjoint operators
on V and let P (V ) be the be the cone of positive operators on V , i.e.

P (V ) = {A ∈ A(V ) : all eigenvalues of A are nonnegative}.

This defines a partial order on A(V ) by A 6 B iff B − A ∈ P (V ). We denote by
[A, B] the set of all C ∈ A(V ) such that A 6 C 6 B. We also denote by ‖A‖ the
largest eigenvalue of A in absolute value.

We can now state our Operator Hoeffding Inequality. We refer the reader to [8] for
its proof.

Theorem 17 ([8] Operator Hoeffding Inequality). Let V be a Hilbert space of dimen-
sion d and let Xi = E(X|Fi) be a martingale, taking values in A(V ), whose difference
sequence satisfies Yi ∈ [−1

2
I, 1

2
I]. Then

Pr(‖X − EX‖ > nh) 6 2d exp {−nH(1/2 + h)}.

Note that the case d = 1 of this inequality is exactly Hoeffding’s inequality.

We now proceed to show that random Latin square graphs have small second eigen-
value and thus good expansion properties.

Proof of Theorem 10. Let s1, . . . , sk be elements of [n] chosen independently and uni-
formly at random. For s ∈ [n] let L(s) be the 0,1 matrix in which L(s)ij = 1 if and
only if Lij = s. So the normalised adjacency matrix of the multigraph G generated

by these elements is T = 1
2k

k∑
i=1

(L(si) + L(si)
T ). Let B = T − 1

n
J , where J is the

n by n matrix having ‘1’ in every entry. We claim that µ(G) = ‖B‖, where J is
the having ‘1’ in every entry. Indeed, if {v0, v1, . . . , vn−1} is an orthonormal basis
of T , with each vi having eigenvalue λi, and v0 = 1√

n
(1, . . . , 1), then Bv0 = 0 and

Bvi = λivi, so µ(G) = ‖B‖ as required. Let Yi be the operator whose matrix is
1
4

(
L(si) + L(si)

T − 2
n
J
)
. It is easy to check that Xi = Y1 + . . . + Yi is a martingale
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satisfying the conditions of the theorem. It follows that

Pr(µ(G) > ε) = Pr

(∥∥∥∥∥1

k

k∑
i=1

Yi

∥∥∥∥∥ >
ε

2

)

= Pr

(
‖X − EX‖ >

εk

2

)
6 2n exp

{
−kH

(
1 + ε

2

)}
,

as required.

Proof of Theorem 12. It is enough to prove the result for 0 < δ < 1/2. Note that
H(x) is continuous in (0, 1) and tends to log 2 as x tends to 1. Pick an x such
that H(x) > (1 − δ/2) log 2. Then, for k = |S| = (1 + δ) log2 n, we have kH(x) >
(1 + δ/4) log n. Thus,

Pr(µ(G(L, S)) > 2x− 1) 6 2n exp {−(1 + δ/4) log n} = 2n−δ/4 = o(1).

Thus whp, µ(G(L, S)) < 2x − 1 < 1. It is well known that if µ(G) < 1 then G is
connected, so the result follows.

Proof of Theorem 13. Let T be a minimial disconnecting set, so |T | 6 2k. Let U be
the smallest component of G \T and let W = V (G) \ (U ∪ T ). Note that |W | > n/4.
We claim that whp, |U | 6 128 log n. Our proof of this claim is very similar to [16,
Theorem 4.1]. Firstly, we deduce from Theorem 10 that whp µ(G) 6 4

√
k log n.

Since there are no edges from U to W , it follows from the edge distribution bound
for pseudorandom graphs (see e.g. [16, Theorem 2.11]) that

2k

n
|U ||W | < µ

√
|U ||W |

and so

|U | < µ2n2

4k2|W |
6

µ2n

k2
6

16n log n

k
.

Using [16, Theorem 2.11] again, we deduce that the number of edges having both
endpoints in U (counted with multiplicity) satisfy

e(U,U) 6
2k

n
|U |2 + µ|U | < (32 log n + 4

√
k log n)|U | 6 k

2
|U |,

provided C is large enough. It follows that the number of edges with exactly one
endpoint in U and one in T satisfy

e(U, T ) = 2k|U | − e(U,U) >
3k

2
|U |.

On the other hand, using [16, Theorem 2.11] once more, we have

e(U, T ) 6
2k

n
|U ||S|+ µ

√
|U ||S| 6

(
1 + 4

√
2 log n

|U |

)
k|U | 6 3k

2
|U |,
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a contradiction. So we may assume that |U | 6 128 log n.

We now claim that whp, the following holds: For any 3 distinct vertices x, y, z of G,
|(N(x) ∪ N(y)) \ N(z)| > 128 log n, where N(x) denotes the neighbourhood of the
vertex x. Having proved this, it will follow that whp |U | 6 2 and so |T | > δ(G)− 1.

So, let x, y, z be distinct vertices of G. Let s1, s2, . . . , sk be the elements of S cho-
sen uniformly at random and let Xi = E(|(N(x) ∪ N(y)) \ N(z)||s1, . . . , si). Then
X0, X1, . . . , Xk is a martingale with Lipschitz constant 4 and X0 > k(1 − 2/n)k. It
follows by the Hoffding-Azuma inequality that

Pr(|(N(x) ∪N(y)) \N(z)| 6 k(1− 2/n)k − t) 6 exp

{
− t2

2k

}
.

Letting t =
√

8k log n we obtain that

Pr(|(N(x) ∪N(y)) \N(z)| 6 128 log n) = O(n−4)

provided C is large enough. Our claim now follows from the union bound. This
completes the proof of the theorem. (It can be checked that C = 168 works.

We omit the proof of Theorem 14, as it can be proved using a similar argument as
in [16, Theorem 4.3]

Sketch proof of Theorem 15. Firstly, one needs to check that the result of Krivelevich
and Sudakov [15] mentioned before the statement of the theorem, also holds for d-
regular multigraphs. We omit the details of this check. Then the result follows
directly from Theorem 10

6 Conclusion and open problems

We have introduced new models of random graphs arising from Latin squares and
studied some of their properties. There is still a lot of research that needs to be done
even for many of the properties that we have considered here.

Regarding the clique and independence numbers it would be interesting to know
if the upper bound can be reduced further. In particular, we believe (but cannot
prove) that the 2 in the exponent can be reduced further. It would be also inter-
esting to know whether there are examples of random Latin square graphs whose
clique/independence number is significantly larger than Θ(log n log log n). It looks
plausible that this is not the case.

Similar remarks hold for the lower bound on the chromatic and clique cover numbers.
Any improvement on the upper bound of the independence/clique numbers would give
a corresponding improvement on the chromatic/clique cover numbers but it might be
possible (or even easier) to get such improvements directly.
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Another interesting question which we have not been able to answer so far is the
determination of the Hadwiger number of random Latin square graphs, i.e. the largest
integer k such that the graph can be contracted into a Kk. We do not even know, for
p = 1/2 say, whether this number depends on the sequence of Latin squares or not.

We have not studied at all the girth of random Latin square graphs. The reason
is that it depends a lot on the structure of the Latin squares chosen. For example,
almost every G ∈ G (Zm

3 , p) has whp girth 3, provided pn → ∞, where n = 3m. On
the other hand, we claim that almost every G ∈ G (Zm

2 , p) has whp girth strictly
greater than 3 provided that pn2/3 → 0, where n = 2m. Indeed, the expected number
of triangles containing a fixed vertex x is

(
n−1

2

)
p3 which tends to 0. By Markov’s

inequality x is whp not contained in any triangle. But since the graph is vertex
transitive, our claim follows.

The expansion properties of random Latin squares imply that almost every G ∈
G (Ln, c log2 n), with c > 1, has logarithmic diameter. An interesting question here
is the threshold for the diameter becoming equal to 2. It turns out that there are
constants c1 and c2 such that if p < c1 log n/n, then almost every G ∈ G (Ln, p) has
diameter greater than 2, while if p > c2 log n/2, then almost every G ∈ G (Ln, p) has
diameter less than or equal to 2. The values of c1 and c2 depend on the sequence of
Latin squares chosen. Our results regarding the diameter will appear in a forthcoming
paper [9].
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