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Abstract

The smallest n such that every colouring of the edges of Kn must
contain a monochromatic star K1,s+1 or a properly edge-coloured Kt is
denoted by f(s, t). Its existence is guaranteed by the Erdős-Rado Ca-
nonical Ramsey theorem and its value for large t was discussed by Alon,
Jiang, Miller and Pritikin [1].
In this note we primarily consider small values of t. We give the exact

value of f(s, 3) for all s ≥ 1 and the exact value of f(2, 4), as well as
reducing the known upper bounds for f(s, 4) and f(s, t) in general.

1 Properly edge-coloured subgraphs

Given graphs G and H, let R(G,H) be the smallest n such that every colouring
of the edges of Kn must contain a monochromatic G or a rainbow H (meaning
a copy of H in which no two edges have the same colour). The Erdős-Rado
Canonical Ramsey theorem [3] implies that R(G,H) exists if and only if either
G is a star or H is acyclic.
A systematic study of R(G,H) was begun by Jamison, Jiang and Ling [7]

and by Chen, Schelp and Wei [2]. However certain cases were already in the
literature — for instance, the case when H is the star K1,k+1 is the k-local
Ramsey number of G (see Gyárfás, Lehel, Schelp and Tuza [5]). When H is a
path, the case when G is also a path was highlighted in [7] and studied in [15],
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and in [14] it was shown that if H is a path of length ℓ ≤ 5 (the length being the
number of edges) then R(G,H) is effectively determined by the (ℓ − 1)-colour
Ramsey number for G. On the other hand, Alon, Jiang, Miller and Pritikin [1]
concentrated on the case when G is a star. They looked especially at the case
when G is complete, which was implicit in the work of Lefmann and Rödl [9]
on Canonical Ramsey numbers. This is the focus of the present note also.
Following [1], for s ≥ 1 and t ≥ 2 we define g(s, t) = R(K1,s+1,Kt), and

we define f(s, t) to be the smallest n such that every colouring of the edges
of Kn must contain a monochromatic K1,s+1 or a properly edge-coloured Kt
(meaning a Kt within which no two incident edges have the same colour). It
follows from the definitions that f(s, t) ≤ g(s, t). Plainly f(s, 2) = g(s, 2) = 2
and f(1, t) = t. Henceforth we shall assume that s ≥ 2 and t ≥ 3.
It is proved in [1] that g(s, t) = Θ(st3 log t). The function f(s, t) is also

estimated well, though not quite so precisely; it is shown that cst2/ log t ≤
f(s, t) ≤ 4st2 for some constant c. The small gap here prompted us to look
more closely at f(s, t), beginning with small values of t.
Clearly f(s, 3) = g(s, 3). We give the precise value of f(s, 3) in the next

section. In §3 we show that f(2, 4) = 10 and give bounds on f(s, 4). Finally
in §4 we improve slightly the upper bound for f(s, t).

2 Rainbow triangles

Take a 2-coloured K5 consisting of a red and a blue 5-cycle. Substitute a green
complete graph into each vertex, so that the edges between two green graphs
are the same colour as the edge between the original two vertices. If each green
graph has k vertices we get a K5k with no monochromatic K1,2k+1. If one green
graph has k + 1 vertices and the others have k then we get a K5k+1 with no
monochromaticK1,2k+2. In neither case is there a rainbowK3. These colourings
establish lower bounds on f(s, 3) which are tight.

Theorem 1 f(s, 3) = 5s/2+1 if s is even and f(s, 3) = 5s/2− 1/2 if s is odd.

Proof. A direct proof can be found in [16] but a shorter proof follows Gyárfás
and Simonyi [6], who called colourings of the edges of Kn with no rainbow K3
Gallai colourings on the basis of Gallai’s work [4]. They gave a simple argument
that every Gallai colouring with n ≥ 2 consists of substituting Gallai colourings
into the vertices of a 2-coloured complete graph on at least two vertices. Let
Kn be Gallai coloured and let there be ℓ vertices in the 2-coloured complete
graph (coloured red and blue, say). As noted in [6], if ℓ ≤ 4 then some vertex
of Kn has degree at least n/2 in red or blue, and if ℓ ≥ 5 then a vertex in the
smallest block has degree at least 2n/5 in red or blue, which already proves that
f(s, 3) ≤ 5s/2 + 1 if s is even (this is Theorem 3.1 of [6]).
So let s = 2k + 1 and n = 5k + 2, and suppose Kn is Gallai coloured with

no monochromatic K1,2k+2. There are ℓ ≥ 5 blocks, and each vertex is joined
to at most 2(2k+1) = 4k+2 vertices in other blocks. Thus each block has size
at least k. Therefore ℓ ≤ 7. If ℓ = 7 then k = 1 and every block has size one.
But each vertex of the 2-coloured K7 has degree at most three in red and blue,
which is impossible: thus ℓ ≤ 6. If ℓ = 6 then either k = 2 or k = 1. The first is
impossible, for it implies every block has size 2, and then some block is joined
to 3 others by red, say, giving a monochromatic K1,6. So k = 1 and there are
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five blocks of size 1 and one, B say, of size 2. The five vertices not in B are each
joined to three vertices by red (and by blue), and the two vertices in B have
the same degree in red, which is impossible. So ℓ = 5.
So there are five blocks, three or four of which have size k. If a block has

size k then the remaining four blocks must be partitionable into two sets of size
2k + 1. So if there are four blocks size k, and one of size k + 2, then k = 1.
But this is impossible, because the block of size 3 must be joined to at least one
singleton, x, by red and to another, y, by blue; by symmetry we may assume
xy is red, and then x is the centre of a red K1,4. Hence there are three blocks
of size k and two of size k+1. Each small block must be joined to the two large
ones by edges of different colours. So there must be two small blocks both joined
to one large block by red and to the other large block by blue. By symmetry
we may assume the large blocks are joined to each other by red; but then each
vertex in a large block is at the centre of a red K1,3k+1, a contradiction. �

3 Properly edge-coloured K4s

In this section we consider f(s, 4) for s ≥ 2. We begin with lower bounds.

Lemma 2 f(2, 4) > 9.

Proof. Label the vertices of K9 v0, v1, . . . , v8. Let Ci, 0 ≤ i ≤ 8, be the 4-
cycle with edges vivi−1, vi−1vi+1, vi+1vi+4, vi+4vi, with suffixes taken modulo 9.
Since each cycle contains exactly one edge whose suffixes differ by j, 1 ≤ j ≤ 4,
it follows that the nine 4-cycles form a (rotationally symmetric) partition of the
36 edges of K9. Colour the edges of Ci with colour i. Then we have a colouring
with no monochromatic K1,3. Suppose there is a properly edge-coloured K4. If
no two vertices have consecutive suffixes then we may assume (by symmetry)
that they are v0, v2, v4, v6. But v4v6 and v6v0 both have colour 5. So we may
assume that v0 and v1 are in the K4. Since v0v1 has colour 1, neither v2 nor
v5 is in the K4. Neither v4 nor v8 can be in the K4 else they would meet
two edges of colour 0. The three remaining possibilities for V (K4), namely
{v0, v1, v3, v6}, {v0, v1, v3, v7} and {v0, v1, v6, v7}, are ruled out by colours 2, 8
and 6 respectively. This completes the proof. �

It is interesting to observe that this construction uses nine colours on only
four edges each; intuition might suggest that employing few colours, perhaps
only four (each used on a 2-factor), would be a good idea, but this is not the
case. The construction has implications for larger s too.

Lemma 3 f(s, 4) > 9s/2 for even s and f(s, 4) > 9s/2− 3/2 for odd s.

Proof. The lower bounds come from a natural blowup method also used
in [1]. If s = 2k, take the colouring of K9 given by Lemma 2 and substitute Kks
into each vertex, coloured with a new colour, in the manner of §2. This gives a
colouring of K9k with no monochromatic K1,2k+1. If s = 2k + 1, we substitute
Kk+1 into v0, v3 and v6 and substitute Kks into the other six vertices. Since no
vertex of K9 is joined to two of {v0, v3, v6} by the same colour, the colouring of
K9k+3 contains no monochromatic K1,2k+2.
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Any K4 in the K9k or K9k+3 that has its vertices in pairwise distinct sub-
stituted complete graphs is properly edge-coloured because it is coloured in the
same way as a K4 in the coloured K9. Any other K4 either has more than two
vertices in one complete graph or it has two in one complete graph and at least
one in another. In neither case is the K4 properly edge-coloured, completing
the proof. �

Upper bounds for f(s, 4), and for f(s, t) in general, make use of estimates of
the number of monochromatic paths of length two. The following bound applies
generally.

Lemma 4 Let Kn be edge-coloured with no monochromatic K1,s+1. Then there
are at most (s− 1)

(

n

2

)

monochromatic paths of length two.

Proof. Each monochromatic path of length two contains two edges. Each of
the
(

n

2

)

edges of Kn lies in at most 2(s− 1) such paths. �

The upper bound f(s, 4) ≤ 64s was given in [1]. One way of improving
this is by arguing as follows. Let n = f(s, 4) − 1 and let Kn be coloured with
no monochromatic K1,s+1 and no properly edge-coloured K4. By Lemma 4 we
can find two vertices v and w such that there are at most s − 1 vertices u for
which the path vuw is monochromatic. Let X be the set of vertices x such that
{x, v, w} spans no monochromatic path (i.e. spans a rainbow triangle). Since
there is no monochromatic K1,s+1 we have |X| ≥ (n− 2)− 3(s− 1). Let F be
the graph on vertex set X consisting of edges xy for which at least one of xvy
and xwy is monochromatic. Each vertex of X has degree at most 2(s − 1) in
F , and so F has at most |X|(s − 1) edges. Given x ∈ X, let Mx be the set
of edges xy with y ∈ X for which at one of vxy and wxy is monochromatic.
Then |Mx| ≤ 2(s− 1). Observe now that, for any edge xy with x, y ∈ X, either
xy is an edge of F or xy ∈ Mx ∪My, because otherwise {v, w, x, y} spans a

properly edge-coloured K4. Thus
(

|X|
2

)

≤ 3|X|(s − 1) or |X| ≤ 6s − 5. Hence
f(s, 4) = n + 1 ≤ |X| + 3s ≤ 9s − 5. This upper bound is less than twice the
lower bound given by Lemma 3.
An alternative approach to bounding f(s, 4) is by associating a 3-uniform

hypergraph H with each edge-colouring of Kn. The vertex set of H is the same
as that of Kn, and the edges of H are those triples not spanning a rainbow
triangle — that is, those containing a monochromatic path of length two. An
independent set of size 4 in H corresponds exactly to a properly edge-coloured
K4 inKn. The number of edges inH is bounded above (say, by Lemma 4). If n is
large enough then the number of edges in H will be less than the number needed
to prevent the occurrence of an independent 4-set. In this way we obtain an
upper bound on f(s, 4). This argument is the basis of the bounds in [1] though
by applying it more carefully we get somewhat reduced bounds. (Of course,
in [1] there was no attempt to optimize the constants.)
Let m4(n) be the minimum number of edges in a 3-uniform hypergraph of

order n with no independent 4-set, and let µ4(n) = m4(n)
(

n

3

)−1
be the minimum

density. It is easily shown that µ4(n) is an increasing function of n.
Most of the inequalities m4(4) > 0, m4(5) > 2, m4(6) > 5, m4(7) > 11,

m4(8) > 18, m4(9) > 28 and m4(10) > 40 are easily established by induction;
for example, a hypergraph of order 9 having 28 edges has a vertex of degree
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at least 10, whose removal leaves a hypergraph with at most 18 edges, and
so m4(8) > 18 implies m4(9) > 28. The only inequality that does not follow
this way is m4(7) > 11: the truth of this can be established by a short direct
argument (see [16]) or by computer.
We make these remarks because the inequality m4(10) > 40 is what we need

for the next theorem. In fact, the identities m4(4) = 1, m4(5) = 3, m4(6) = 6,
m4(7) = 12, m4(8) = 20 and m4(9) = 30 are reported by Katona, Nemetz
and Simonovits [8], m4(10) = 45 by Stanton and Bate [13] and m4(11) = 63,
m4(12) = 84 and m4(13) = 112 by Radziszowski and Zou [12, p. 187]. These
figures have been verified and extended by one of us [10, 11].
We can now evaluate f(2, 4) precisely.

Theorem 5 f(2, 4) = 10.

Proof. Lemma 2 shows f(2, 4) ≥ 10. Suppose now that we have a K10 edge-
coloured with no monochromatic K1,3. There are at most four monochromatic
paths of length two centred at each vertex, and so the associated 3-uniform
hypergraph H of order 10 has at most 40 edges. Since m4(10) > 40 this means
H has an independent 4-set, so the K10 has a properly edge-coloured K4. Hence
f(2, 4) ≤ 10. �

The next theorem provides a simple upper bound which improves on our
previous 9s− 5 and so is closer to the lower bound of Lemma 3.

Theorem 6 f(s, 4) ≤ 15s/2.

Proof. Let n = ⌊15s/2⌋ and suppose that Kn is edge-coloured without
a monochromatic K1,s+1 and without a properly edge-coloured K4. Of the
n − 1 edges at a vertex, at most s are the same colour, and so the number of
monochromatic paths of length two centred at that vertex is at most 7

(

s

2

)

+
(

r−1
2

)

where 7s+r = n and r = ⌊s/2⌋ ≥ 1. So the number of edges in the associated 3-
uniform hypergraph H is at most n

(

7
(

s

2

)

+
(

r−1
2

))

. Since H has no independent
4-set the density of H is at least µ4(n). Because n > 13 we have µ4(n) ≥

µ4(13) = 112
(

13

3

)−1
= 56/143 > 7/18, using the data mentioned earlier. Hence

the inequality

n

(

7

(

s

2

)

+

(

r − 1

2

))

≥
7

18

(

n

3

)

, that is, 7

(

s

2

)

+

(

r − 1

2

)

≥
7

54

(

n− 1

2

)

,

holds. Writing r = (s − δ)/2, where δ = 0 or 1, we have s = 2r + δ and
n = 15r+7δ. After substituting these expressions for s and n into the inequality,
multiplying by 108 and rearranging, remembering that δ2 = δ, we obtain −9r2+
42rδ−603r+94−196δ ≥ 0. Therefore −9r2−561r+94 ≥ 0. But this inequality
is not satisfied for any r ≥ 1, a contradiction which completes the proof. �

The inequality m4(19) ≥ 574 is given in [10, 11] and this can be used to
improve Theorem 6 to f(s, 4) ≤ 7.304s. Note that using the limit µ4(n)→ 4/9,
conjectured by Turán, in the previous argument would bring the upper bound
only just below 13s/2 for large s.
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4 A general bound

We conclude by observing a slight improvement on the bound f(s, t) ≤ 4st2

of [1]. Given an edge-colouring of Kn with no monochromatic K1,s+1 or prop-
erly edge-coloured Kt, we associate with it a 3-uniform hypergraph as in the
previous section. The upper bound on the number of edges of H given by
Lemma 4 applies. But H has no independent t-set. Write mt(n) and µt(n)
for the minimum number of edges and minimum density, respectively, of a 3-
uniform hypergraph of order n with no independent t-set. As before, µt(n)
increases with n. In [1] the bound mt(2t) > t was used. Writing α = t − 1,
Sidorenko [12, equation (33) p. 192] states the values mt((9α+ 1)/4) = 3α+ 3,
mt(9α/4) = 3α, mt((9α − 1)/4) = 3α + 1 and mt((9α + 2)/4) = 3α + 4, valid
for t ≡ 0, 1, 2 and 3 (mod 4) respectively. In each case, it is readily verified

that the density µt(n) = mt(n)
(

n

3

)−1
is at least 128/81α2. Also, n < 3α in each

case.

Theorem 7 f(s, t) ≤ 352−7(s− 1)(t− 1)2 + 3 < 1.899(s− 1)(t− 1)2 + 3.

Proof. Theorem 1 means we can assume t ≥ 4. Let n = f(s, t)− 1 and let
Kn be edge-coloured with no monochromatic K1,s+1 or properly edge-coloured
Kt. Let H be the associated 3-uniform hypergraph. By Lemma 4, H has at
most (s− 1)

(

n

2

)

edges, so it has density at most 3(s− 1)/(n− 2). Since H has
no independent t-set, its density is at least µt(n). Either n < 3t, in which case
the theorem is true anyway, or n ≥ 3t and so, by the remarks preceding the
theorem, µt(n) ≥ 128/81(t− 1)

2. The theorem follows. �
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