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Abstract. An even cycle decomposition of a graph is a partition of its edge into even
cycles. We first give some results on the existence of even cycle decomposition in general
4-regular graphs, showing that K5 is not the only graph in this class without such a
decomposition.
Motivated by connections to the cycle double cover conjecture we go on to consider

even cycle decompositions of line graphs of 2-connected cubic graphs. We conjecture
that in this class even cycle decompositions always exists and prove the conjecture for
cubic graphs with oddness at most 2. We also discuss even cycle double covers of cubic
graphs.

1. Introduction

One of the first theorems we learn in graph theory is that a graph has a cycle decomposition
if and only if it is eulerian. Here a cycle decomposition of a graph G is a partition of its
edge set where each part is a cycle in G. The proof of this theorem is very simple but when
additional constraints are imposed on the structure of the cycle decomposition numerous
connections to some of the hardest problems in graph theory appear. Two enjoyable
surveys can be found in [Jac93] and [Fle01].
Perhaps the simplest additional constraint is to require that all cycles in the decom-

position have even length, here called an even cycle decomposition or ECD. An obvious
necessary condition for this be possible is that each 2-connected component, called a block,
of G has an even number of edges. In 1981 Seymour [Sey81] proved that an eulerian planar
graph , in which every block has an even number of edges, has an ECD. In 1994 Zhang
[Zha94] strengthened this result by replacing planarity with the condition that G has no
K5-minor. Zhang also conjectured that K5 is the only 3-connected eulerian graph without
an ECD, but an infinite family of counterexample was later found by Jackson [Jac93].
Jackson in turn asked whether K5 was the only 4-connected such example. This question
was answered by Rizzi [Riz01] who constructed an infinite family of 4-connected graphs
with vertices of degree 4 and 6, and no ECD.
The aim of this paper is to consider the existence of ECDs in 4-regular graphs. As we

show in the next section the restriction to regular graphs is not enough to make K5 the
only ECD-free such graph in the class under consideration. However we conjecture that
4-regular line graphs of 2-connected cubic graph have ECDs. We next discuss how this
conjecture relates to even cycle double covers of cubic graphs, and cubic graphs having
such covers. Finally we prove the conjecture for line graphs of cubic graphs of oddness at
most 2.
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Figure 1. The edge gadget

Figure 2. A 3-connected 4-regular graph with no even cycle decomposition

2. General 4-regular graphs

For a 4-regular graph any 2-connected component must have an even number of edges,
and the simplest of the conditions necessary for the existence of and ECD is always met
if the graph has connectivity at least 2.
As mentioned in the introduction the construction of Rizzi, and that of Jackson, do not

lead to 4-regular graphs. However for 2-connected graphs it is easy to construct infinitely
many graphs without an ECD. If an edge of a 2-connected 4-regular graph is replaced by
the gadget in Figure 1 the resulting graph will not have an ECD.
In Figure 2 we give an example of a 3-connected, and 4-edge-connected, graph which

does not have a ECD. We do not have a short proof demonstrating that the graph does
not have an ECD, only a case analysis, but since the graph is so small the reader could
alternatively verify the claim by computer.
A natural question is whether a typical 4-regular graph on n vertices has en ECD.

Zhang’s result [Zha94] does not tell us anything here since almost all 4-regular graphs have
a K5-minor [Mar04], and in fact much larger complete minors [FKO09]. The following
theorem settles the question for even n:

Theorem 2.1 ([KW01]). A random 4-regular graph asymptotically almost surely decom-
poses into two hamiltonian cycles.

For odd n this is not helpful for our purposes, however we conjecture
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Conjecture 2.2. A random 4-regular graph on 2n+1 vertices asymptotically almost surely
has a decomposition into a C2n and two other even cycles.

Note that the two shorter even cycles must intersect in exactly one vertex.
A question which we have not managed to settle is

Problem 2.3. Are there 3-connected 4-regular graphs with girth at least 4 which do not
have an ECD?

3. Line graphs of cubic graphs

A class of 4-regular graphs with interesting structural properties are the line graphs of
cubic graphs. In particular they have strong connections to cycle covers of cubic graphs,
as discussed in [Jac93, Fle01], and that was one of our motivations for the current work.
Given a graph G let L(G) denote its line graph.
Our main conjecture is

Conjecture 3.1. If G is a 2-connected cubic graph then L(G) has an ECD.

We have not been able to prove this conjecture, but as we shall demonstrate counter-
examples, should they exit, must be rare.

3.1. Even cycle double covers. Recall that a cycle double cover of a graph G is a
family of cycles from G such that every edge of G belongs to exactly two of the cycles.
The well known cycle double cover conjecture claims that all 2-connected cubic graphs
have a cycle double cover.
A simple observation is that

Lemma 3.2. A three edge-colourable cubic graph has a cycle double cover. In addition
there is such a cover in which every cycle is even.

We will refer to a cycle double cover containing only even length cycles as an even cycle
double cover, or a ECDC.

Lemma 3.3. If a cubic graph G has an even cycle double cover then L(G) has an even
cycle decomposition.

Proof. Assume that the cycle double cover consists of the cycles C1, . . . , Ck. Let ei,1, . . . , ei,ni
be the edges of Ci in the order they appear in Ci. Now i we view ei,1, . . . , ei,ni as vertices

in L(G) they define a cycle C̃i in L(G) as well, of the same length as Ci, and since each
edge of G belongs to two such cycles each vertex in L(G) will lie in exactly two of the
cycles.
Finally, since two cycles C1 and C2 of a cycle double cover in a cubic graph, cannot

intersect in two incident edges, every edge of L(G) must belong to exactly one of the cycles

C̃i. Hence C̃1, . . . , C̃k is an ECD of L(G) �

Together the lemmata give us

Theorem 3.4. If G is a three edge-colourable cubic graph then L(G) has an even cycle
decomposition

It is an immediate consequence of the configuration model for random regular graphs
[Bol80] that almost all cubic graphs are three edge-colourable. We s ay that a property
holds asymptotically almost surely if the probability that a gaph on n vertices has the
property tends to 1 as n→∞.

Corollary 3.5. If G is a random cubic graph then asymptotically almost surely L(G) has
an ECD.
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We are now led to ask: which cubic graphs have even cycle double covers? In Szekeres’s
first paper on the cycle double cover conjecture [Sze73] he pointed out that the Petersen
graph does not have an ECDC, and also claimed to prove that in fact a cubic graph has
an ECDC if and only if it three edge-colourable. However Preissman later pointed out
[Pre80] the proof in incorrect, and showed that there is an infinite family of snarks with
ECDCs.
We say that a cubic graph G is a 2-sum of two cubic graphs G1 and G2 if there exists

an edge cut of size two in G such that if we delete the edges of the cut we are left with
two graphs G′

1
and G′

2
which are formed by deleting an edge from G1 and G2 respectively.

We say that G is a 3-sum of G1 and G2 if there exists an edge cut of size three in G such
that if we delete the edges of the cut we are left with two graphs G′′

1
and G′′

2
which are

formed by deleting a vertex from G1 and G2 respectively.
Starting with the Petersen graph it is easy to construct infinitely many cubic graphs

without an ECDC by taking 2-sums or 3-sums with bipartite cubic graphs. However it
is easy to check the standard connectivity and girth reductions for snarks introduced by
Isaacs [Isa75], see also [Jae85], have the following properties

Lemma 3.6.

(1) Assume that the cubic graph G is a 2-sum or a 3-sum of two graphs G1 and G2.
If G does not have an ECDC then at least one of G1 and G2 does not have an
ECDC.

(2) If the cubic graph G does not have an ECDC and G contains a triangle then
the graph obtained by contracting the triangle to a single vertex does not have an
ECDC.

(3) If the cubic graph G does not have an ECDC and G contains a C4 then we can
construct a smaller graph with no ECDC by deleting the C4 and adding two edges
to form a new cubic graph.

With this lemma in mind we see that the study of even cycle double covers can be focused
on snarks. We have used a computer to search for ECDCs of the small snarks, which can
be downloaded from [Roy]. We found at least one ECDC in all snarks but the Petersen
graph.

Observation 3.7. The only snark on n ≤ 28 vertices which does not have an ECDC is
the Petersen graph.

It is natural to ask

Problem 3.8. Is the Petersen graph the only snark which does not have an even cycle
double cover?

3.2. Line graphs of cubic graph with larger oddness. As we have seen Conjecture
3.1 is true for three edge-colourable graph. One way of quantifying how far a cubic graph
is from being three edge-colourable is by its oddness

Definition 3.9. A 2-connected cubic graph G has oddness o(G) = k if k is the smallest
number of odd cycles in a 2-factor of G.

By Petersen’s theorem [Pet91] every 2-connected cubic graph has at least three 2-factors.
A three edge-colourable graph has oddness 0, since the edges of the first to colours induce
a bipartite 2-factor. The Petersen graph P has o(P ) = 2.
Results in terms of oddness have been studied for cycle double covers. Huck and Kochol

[HK95] proved that cubic graphs of oddness 2 have cycle double covers, and later this was
extended by Häggkvist and McGuinness [HM05] and [Huc01] to oddness 4.
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Figure 3. A simple intersection

Our final result is

Theorem 3.10. If G is a 2-connected cubic graph with o(G) = 2 then L(G) has an ECD.

Proof. Let C = {C1, . . . , Ck} be a 2-factor of G with only two odd cycles, where C1 and
C2 are the odd cycles.
Since G is 2-connected we can find two vertex disjoint paths P1 and P2, each with

exactly one vertex in C1 and one in C2. We also assume that P1 and P2 are shortest
among all such paths. Let A1 and A2 be the two edge-disjoint paths in C1 joining the
endpoints of P1 and P2. Since C1 is odd exactly one of A1 and A2 mus have odd length,
we may assume that it is A1. Let p1 be the path formed by A1 and the first edge of P1
and P2. Let p2 be form by A2 and the same edges from P1 and P2.
We will now use p1 and p2 to construct a covering, by paths and cycles, of P1 and P2

such that the edges are covered twice if they belong to C \ (P1 ∪ P2), once if they belong
to C, and each cycle in the covering is even. We will do this by following both paths from
C1 to C2 in parallel and extend the graphs p1 and p2 appropriately. In all the following
figures we imagine that the path are going left to right towards C2.
If only one of P1 and P2 intersect a cycle Ci, i ≥ 3 from C then we route two two paths

p1 and p2 through C as shown in Figure 3
If both P1 and P2 intersect Ci, i ≥ 3 then there are two possible configurations, shown

in figures 4 and 5. In the situation depicted in Figure 4, both p1 and p2 are routed past
Ci, and since Ci has even length exactly one of them will have odd length after doing so,
even though which one might have changed.
In the situation depicted in Figure 5 one of the incoming paths p1 and p2 is closed to

form a cycle. If the left path from u to v in Ci has odd length we choose to close the one
of the pi:s which has odd length, otherwise we close the even one, thereby forming an even
cycle. In those situation we then continue to the right with a new path in place of the one
we close. Since Ci has even length exactly one of the two continuing paths will have odd
length.
When two paths p1 and p2 reach C2 we use the two paths in C2 between the endpoint

of P1 and P2 to closed them off into cycles. Since C2 has odd length, exactly one of the
two paths within C2 have odd length so we can ensure that both the cycles now formed
are even. Call this family of cycles D0.
Given a cycle C in G we say that there are two cycles in L(G) associated with C. One

cycle C ′ whose vertices are consecutive edges in C, and one cycle C ′′ whose vertices are
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Figure 4. The first kind of double intersection

Figure 5. The second kind of double intersection

alternatingly edges incident with with C, but not in C, and edges in C. An example is
shown in Figure 6. Note that C ′′ is twice as long as C and hence always an even cycle.
We are now ready to construct the ECD of L(G). Given the 2-factor C we get a cycle

decomposition D1 by taking the associated cycles for all cycles in C, however C
′

1
and C ′

2

are odd. We know delete C ′i from D1, for all i, to form D2. At each edge of (P1∪P2)\E(C)
we modify each C ′′ in D2 to instead use an edge of a C

′. This does not change the parity
of the cycle lengths, since each Pi is incident with two or zero such edges in C. This gives
us a collection D3 of even cycles. Finally we form our ECD D by including all cycles C

′

for C ∈ D0. �

All snarks on n ≤ 28 vertices have oddness 2, again by computational observation using
the snarks from [Roy], and as far as we know the size of smallest snark with oddness 2 has
not been determined. Note that the cycle decomposition constructed in Theorem 3.10 does
not come from and ECDC, so for the small snarks, other than the Petersen graph, there
exist at least two distinct even cycle decompositions. We believe that a more extensive
case analysis would make it possible to prove the conjecture for oddness 4 as well.
Regarding the oddness of random cubic graph we have made the following conjecture.

Conjecture 3.11. Asymptotically almost surely a cubic graph G with o(g) > 2k g ≥ 0
has o(G) = 2k + 2.
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Figure 6. The cycles associated with C for a 6-cycle. C ′ with dashed
edges and C ′′ with dotted.

Even for k = 0 the conjecture seems challenging.
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