
Computation of the Ising partition function for 2-dimensional square grids

Roland Häggkvist,1, ∗ Anders Rosengren,2, † Daniel Andrén,1, ‡

Petras Kundrotas,2, § Per H̊akan Lundow,2, ¶ and Klas Markström1, ∗∗

1Department of Mathematics, Ume̊a University, SE-901 87 Ume̊a, Sweden
2Department of Physics, AlbaNova University Center, KTH, SE-106 91 Stockholm, Sweden

(Dated: August 14, 2005)

An improved method for obtaining the Ising partition function for n× n square grids with peri-
odic boundary is presented. Our method applies results from Galois theory in order to split the
computation into smaller parts and at the same time avoid the use of numerics.
Using this method we have computed the exact partition function for the 320 × 320-grid, the

256× 256-grid, and the 160× 160-grid, as well as for a number of smaller grids. We obtain scaling
parameters and compare with what theory prescribes.

PACS numbers: 05.50.+q,05.10.-a,02.70.wz,02.70.Rr

I. INTRODUCTION

The Lenz–Ising model [1, 2] of ferromagnetism was
solved in the 1-dimensional case by Ernst Ising in 1925
and in the (infinite) 2-dimensional case without an ex-
ternal field by Lars Onsager [3] in 1944. Somewhat later
Bruria Kaufman [4] gave the zero field partition func-
tion for the m×n-grid with periodic boundary. Beale [5]
has made an easy-to-use program in Mathematica which
implements this solution. Beale used this program to
compute the partition function for the 32× 32-grid, and
with a modern desktop computer one can use this pro-
gram to compute the partition function for the 64× 64-
grid in about 30 hours. We present an improved form of
the algorithm where this computation now runs in under
6 hours, using a simple implementation in Mathemat-
ica. We use a Fortran implementation of this algorithm
to compute the partition function for a large number of
grids of side up to 128, as well as the 160×160, 256×256
and 320× 320-grid.
The graphs we are dealing with are them×n-grids with
periodic boundary, i.e. the Cartesian product Cm × Cn
of a cycle on m and n vertices respectively. The total
number of vertices is then mn and the number of edges
is 2mn. A state σ is a function from the vertices to the
set {−1,+1}. We let σv denote the state, or spin, of the
vertex v. The energy of a state σ is E(σ) =

∑

uv σuσv
where the sum is taken over all edges. We then have
that −2mn ≤ E ≤ 2mn, but note that the energy can
not take any value in this interval. If both m and n
are even then i can take the values 0,±4,±8, ...,±2mn
except for ±(2mn− 4). The relative energy is defined as
ν(σ) = E(σ)/2mn, that is −1 ≤ ν ≤ 1. We now define

∗Electronic address: Roland.Haggkvist@math.umu.se
†Electronic address: ar@theophys.kth.se
‡Electronic address: Daniel.Andren@math.umu.se
§Electronic address: Petras.Kundrotas@csb.ki.se
¶Electronic address: phl@kth.se
∗∗Electronic address: Klas.Markstrom@math.umu.se

the partition function as the formal Laurent polynomial

Z(z) =
∑

σ

zE(σ) =
∑

i

ai z
i

where the first sum is taken over all the 2mn states. The
second sum defines the coefficients ai as the number of
states at energy i. In graph theoretical language, ai is
the number of edge cuts of size (2mn − i)/2. However,
it is common to work not with Z(z) as defined here but
rather Z0(z) = z

mn Z(z1/2), which gives a polynomial
with positive exponents between 0 and 2mn. In order to
be consistent with our references we will do so too.
Whenever we need to distinguish between quantities
for different grids we will subscript them with just an
n or both m,n. Evaluating the partition function Z in
the point z = eK , where K is the coupling, gives the
partition function Z(K) typically studied in statistical
physics. Here K = J/kBT where J is the interaction
energy, kB is Boltzmann’s constant and T is the absolute
temperature. To avoid cluttering up our formulae we set
kB = J = 1. From Z(K) we obtain e.g. the free energy
F(K), the internal energy U(K) and the specific heat
C(K); we shall define them properly later.

II. THE FINITE SIZE SOLUTION IN TERMS

OF CHEBYSHEV POLYNOMIALS

Following Kaufman [4] and Kasteleyn [6] we know that
the partition function for the square grid graph Cm×Cn
can be expressed as a linear combination of four poly-
nomials. These polynomials in turn are given by the
Pfaffians of four matrices and can be calculated as the
square roots of the corresponding determinants. So if Ai
denote the mentioned determinants we have that

Z0(Cm × Cn, z) = c1
√

A1 + c2
√

A2 + c3
√

A3 + c4
√

A4.

Each Ai is a polynomial given by a double product over
its roots. A comprehensive description of how to obtain
these products and the general Pfaffian method is given
in [7].



Let αt = cos
πt
n , βt = cos

πt
m , a = 1 + z

2 and b =

z(1− z2). In terms of these variables the four Ai are

A1 =

n
∏

i=1

m
∏

j=1

(

a2 − 2bα2i − 2bβ2j
)

A2 =

n
∏

i=1

m
∏

j=1

(

a2 − 2bα2i − 2bβ2j+1
)

A3 =
n
∏

i=1

m
∏

j=1

(

a2 − 2bα2i+1 − 2bβ2j
)

A4 =

n
∏

i=1

m
∏

j=1

(

a2 − 2bα2i+1 − 2bβ2j+1
)

Computing these products directly and then taking
formal square roots is a quite arduous task and we want
to find more efficient ways to do this. A first step in

this direction was taken by Beale [5] who made use of
the fact that most of the roots of the Ai can easily be
seen to be double roots and that one can avoid having to
take square roots simply by restricting the index range
in the products. Using a Mathematica program which
evaluated the cosines numerically before performing the
simplified products Beale computed the partition func-
tion of the 32× 32 square grid.
Our goal is to perform these products even more effi-
ciently, and with less risk for numerical errors, by using
some further observations about the products which both
allow us to avoid numerics and use fewer polynomial mul-
tiplications.

We start out by noting that the roots of the Ai are in
fact sums of roots of Chebyshev polynomials, see Equa-
tions A4 and A5 of Appendix A. Here Tn and Un are
the Chebyshev polynomials of the first and second kind.

Let Y = a2

b and Xt = Y − 2αt, we can now rewrite the
products as:

A1 =

n
∏

i=1

m
∏

j=1

(

a2 − 2bα2i − 2bβ2j
)

= bnm
n
∏

i=1

m
∏

j=1

(Y − 2α2i − 2β2j) =

= bnm
n
∏

i=1

m
∏

j=1

(X2i − 2β2j) = bnm
n
∏

i=1

m
∏

j=1

2

(

X2i
2
− β2j

)

= bnm
n
∏

i=1

2

(

Tm

(

X2i
2

)

− 1
)

(1)

A4 =
n
∏

i=1

m
∏

j=1

(

a2 − 2bα2i+1 − 2bβ2j+1
)

= bnm
n
∏

i=1

m
∏

j=1

(Y − 2α2i+1 − 2β2j+1) =

= bnm
n
∏

i=1

m
∏

j=1

(X2i+1 − 2β2j+1) = bnm
n
∏

i=1

m
∏

j=1

2

(

X2i+1
2
− β2j+1

)

= bnm
n
∏

i=1

2

(

Tm

(

X2i+1
2

)

+ 1

)

(2)

The expressions for A2 and A3 are similar to A4 and A1, the difference being the index of Xt. In A2 the index is
2i and in A3 it is 2i+ 1.

We now restrict our discussion to the case when n = m = 2p. The cases for equal, but odd, sides or unequal sides
are very similar to the current case and can be handled in the same way. We now use Lemma A.4 of Appendix A to
simplify the products further. From Equation 1 we get

A1 = b
4p2

2p
∏

i=1

2

(

T2p

(

X2i
2

)

− 1
)

= b4p
2

2p
∏

i=1

(X22i − 4)U2p−1
(

X2i
2

)

= b4p
2

2p
∏

i=1

(X22i − 4)
2p
∏

i=1

U2p−1

(

X2i
2

)

=

= b4p
2

2p
∏

i=1

(X2i + 2)(X2i − 2)
2p
∏

i=1

U2p−1

(

X2i
2

)

= b4p
2

2p
∏

i=1

(Y − 2α2i + 2)(Y − 2α2i − 2)
2p
∏

i=1

U2p−1

(

X2i
2

)

=

= b4p
2

2p
∏

i=1

((Y + 2)− 2α2i)((Y − 2)− 2α2i)
2p
∏

i=1

U2p−1

(

X2i
2

)

=



= b4p
2

2

(

T2p

(

Y + 2

2

)

− 1
)

2

(

T2p

(

Y − 2
2

)

− 1
) 2p
∏

i=1

U2p−1

(

X2i
2

)

=

= b4p
2

4

(

(

Y + 2

2

)2

− 1
)

U2p−1

(

Y + 2

2

)

4

(

(

Y − 2
2

)2

− 1
)

U2p−1

(

Y − 2
2

) 2p
∏

i=1

U2p−1

(

X2i
2

)

=

= b4p
2

Y 2(Y 2 − 16)U2p−1
(

Y + 2

2

)

U2p−1

(

Y − 2
2

) 2p
∏

i=1

U2p−1

(

X2i
2

)

=

= b4p
2 (1 + z2)4(−1− 2z + z2)2(−1 + 2z + z2)2

b4
×U2p−1

(

Y + 2

2

)

U2p−1

(

Y − 2
2

) 2p
∏

i=1

U2p−1

(

X2i
2

)

Since all the terms are raised to an even power we can now take a formal square root by dividing each exponent
by 2, the correctness of this choice of sign in the square roots will be discussed in connection with the final linear
combination of the polynomials.

√

A1 = b
2p2 (1 + z

2)2(−1− 2z + z2)(−1 + 2z + z2)
b2

×Up−1
(

Y + 2

2

)

Up−1

(

Y − 2
2

) 2p
∏

i=1

Up−1

(

X2i
2

)

=

[Since:Xt = X4p−t] = b
2p2−2(1+ z2)2(−1− 2z+ z2)(−1+ 2z+ z2) U2p−1

(

Y + 2

2

)

U2p−1

(

Y − 2
2

) p−1
∏

i=1

U2p−1

(

X2i
2

)

=

b2p
2−2(1 + z2)2(−1− 2z + z2)(−1 + 2z + z2) U2p−1

(

Y + 2

2

)

U2p−1

(

Y − 2
2

)

(

p−1
∏

i=1

Up−1

(

X2i
2

)

)2

(3a)

Working the same way we can rewrite identity 2

A4 = b
4p2

2p
∏

i=1

2

(

T2p

(

X2i+1
2

)

+ 1

)

= b4p
2

2p
∏

i=1

4T2p

(

X2i+1
2

)

Once again can we take a formal square root.

√

A4 = b
2p2

2p
∏

i=1

2Tp

(

X2i+1
2

)

= b2p
2

(

p−1
∏

i=0

2Tp

(

X2i+1
2

)

)2

(3b)

Likewise for A2 and A3 we find that:

√

A2 = b
2p2

2p
∏

i=1

2Tp

(

X2i
2

)

= [Since:Xt = X4p−t] = b
2p22Tp

(

Y − 2
2

)

2Tp

(

Y + 2

2

) p−1
∏

i=1

(

2Tp

(

X2i
2

))2

=

= b2p
2

2Tp

(

Y − 2
2

)

2Tp

(

Y + 2

2

)

(

p−1
∏

i=1

2Tp

(

X2i
2

)

)2

(3c)

√

A3 = b
2p22Tp

(

Y − 2
2

)

2Tp

(

Y + 2

2

) 2p
∏

i=1

Up−1

(

X2i+1
2

)

(3d)

Note that we have not simplified A3 quite as much as A2
due to the fact that we have to mix Chebyshev polyno-
mials of the first and second kind.

In fact we find that when n = m then A2 and A3
are equal and we could have worked with only one of

them above, but we include both cases separately in order
to simplify for readers wishing to work on more general
cases. Since the expression for A2 is somewhat simpler
than that for A3 we shall use the former in our calcu-
lations. Here it is computationally very favourable to



compute the products first and then square the resulting
polynomials.

III. AVOIDING NUMERICS: A DETOUR DE

GALOIS

In order to calculate the Ai we see that we need to

evaluate expressions like Up−1
(

X2i
2

)

and 2Tp

(

X2i+1
2

)

for several values of i. The most direct route here is
of course to evaluate the cos-terms of the X2i+1 to very
high precision and perform the products with floating
point numbers as coefficients, and later round all coeffi-
cients to integers. Doing this performs well in comparison
to Beale’s method and using an Alpha-workstation and
Mathematica one of us was able to compute
Z(C128 × C128, z) already a few years ago.
The drawback with this numerical, by which we mean
using floating point arithmetic, approach is twofold.
First we must make sure that we use high enough pre-
cision, linear in the number of vertices in the graph,
to get a correct answer and it is not a trivial mat-
ter to choose a suitable precision which guarantees that
both the products and the final additions behave well.
Secondly the computational effort increases with increas-
ing precision, thus making the size of the graph work
against us in two ways. With this in mind our next step
is to remove the need for numerical calculations and as
far as possible stick to integer coefficients throughout the
entire process.

A. When to use only integers

The first question we need to answer is at which point
of our calculation we actually will have integer coeffi-
cients. The place where one would usually resort to nu-
merics is when one wants to compute one of the three
large products

P1 =

p−1
∏

i=1

Up−1

(

X2i
2

)

(4)

P2 =

p−1
∏

i=1

2Tp

(

X2i
2

)

(5)

P4 =

p−1
∏

i=0

2Tp

(

X2i+1
2

)

, (6)

where Pi is the product part of our expression for
√
Ai.

Let us focus on P2 for a moment. Every zero of P2 is of
the form 2αi+2βj , where 2βj is a zero of Up−1(x/2) and
2αi is a zero of Tp(x/2), see Appendix A Equation A4,
and Lemma A.4. In fact the set of zeros of P2 consists of
all such pairwise sums of zeros of Up−1(x/2) and Tp(x/2).
We now make use of the following theorem (the the-
orem is not new but we include a proof for completeness).

Recall that a polynomial is said to be monic if its leading
coefficient is 1.

Theorem III.1. Let P (x) and Q(x) be monic polyno-
mials with integer coefficients and define P ⊕Q to be

(P ⊕Q)(x) =
∏

α∈Z(P )

∏

β∈Z(Q)

(x− α− β)

where Z(P ) is the set of zeros of P and Z(Q) is the set
of zeros of Q, here the zeros are not necessarily distinct.
Then P ⊕Q is a polynomial with integer coefficients.

Proof. From [8], page 177, we know that there exist
matrices MP and MQ, with integer entries, such that
P and Q are the characteristic polynomials of MP and
MQ respectively. From [9], page 30, we know that the
eigenvalues of the matrix MPQ = MP ⊕MQ, where ⊕
denote the Kronecker sum, is the set of pairwise sums of
zeros from P and Q. Thus we know that P ⊕ Q is the
characteristic polynomial of MPQ and since all entries
of MPQ are integers it follows that P ⊕ Q has integer
coefficients.

Corollary III.2. Let P,Q1 and Q2 be polynomials with
integer coefficients. Then

(Q1Q2)⊕ P = (Q1 ⊕ P ) (Q2 ⊕ P ) ,

where both Q1 ⊕ P and Q2 ⊕ P are polynomials with in-
teger coefficients.

From Corollary A.3 of Appendix A we know that both
Up−1(x/2) and 2Tp(x/2) have integer coefficients and so
the theorem implies that P2 has integer coefficients too.
Identical arguments show that P1 and P4 have integer
coefficients as well.
This result is very useful in our context since it means
that if we use numerics we can round our coefficients to
integers once the Pi:s have been computed. Since the
final polynomial is obtained after squaring the Pi:s we
have effectively halved the precision needed in our nu-
merics. This also means that if we can compute the Pi:s
without numerics we can avoid numerics at all stages of
our computation.

B. Galois theory. . .

Before we proceed let us recall some of the basic facts
of Galois theory (for a nice introduction to this topic see
[10]). Let K denote a field [20], such as Q or R and let
K[x] be the ring of polynomials in the indeterminate x.
A polynomial is said to be monic if its leading coefficient
is 1. A polynomial in K[x] is said to be irreducible if
it can not be written as a product of two non-constant
polynomials from K[x]. Thus every polynomial in K[x]
can be written as a product of irreducible polynomials
from K[x].



Given a number α such that p(α) = 0 for some p ∈
K[x] we can find a unique irreducible monic polynomial
q ∈ K[x] of minimal degree such that q(α) = 0; we call
this polynomial the minimum polynomial of α over K.
The minimum polynomial of α will divide any polynomial
of which α is a zero.
Given a polynomial p ∈ K[x] we can form a new field
by adding the zeros of p to K. The smallest field formed
in this way is called the splitting field of p and in this field
p can be factored into linear factors. Given a number α
such that p(α) = 0 for some p ∈ K[x] we denote by K(α)
the splitting field of the minimum polynomial of α. Given
a polynomial p there is always a zero α of p such that the
first deg(p) powers of α form a basis for K(α) as a vector
space over K.
We let G(α) denote the set of automorphisms of K(α)
which fixes the elements of K. From Galois theory we
know that G(α) acts as a permutation of the zeros of the
minimum polynomial of α and it acts transitively on the
set of zeros.

C. . . . when it is not needed, n = 2q,. . .

In each of our three products we want to evaluate a
polynomial in X2i or X2i+1. We recall that Xt = Y −2αt
and for later convenience we denote γt = 2αt.
Since our γt represent 2 cos(

tπ
n ) we have the following

multiplication rule for γt:

γtγu = γt+u + γt−u

which for squaring means that

γ2t = γtγt = γ2t + γ0 = γ2t + 2 (7)

Furthermore we find that if we multiply γt and γn−t we
get

γn−tγt = γ(n−t)+t+γ(n−t)−t = γn+γ(n−2t) = −2+γ(n−2t)
(8)

Here we should keep in mind that γp = 0 and use this to
eliminate terms where γp appears. In both 7 and 8 we
find that we now have indices of γ which correspond to
a term of the form

cos

(

tπ

n/2

)

meaning that we have halved the denominator.
Let us now look at the product P1 and assume that n
is of the form 2q. Rather than computing P1 directly we
compute a sequence of auxiliary polynomials, using the
multiplication rules to simplify the products.

p1,n−2k =

{

Up−1
(

X2k
2

)

1 ≤ k ≤ p− 1
1 otherwise

pt,n−2k =







pt−1,k pt−1,n−k 0 ≤ k ≤ p− 1
pt−1,p k = p
1 otherwise

From our observations above it follows that each pt,k will

be a polynomial in Y and terms of the form cos
(

jπ/2
n/2t−1

)

,

i.e when we increase t by 1 we halve the denominators in
the cos-terms. Thus our final polynomial pq+1,n will have
only cos-terms of the form cos (jπ/2), that is, it will have
only integer coefficients. Now pq+1,n is our entire product
and so is actually P1. This means that the product for P1
will have no remaining cos-terms and there is no need for
numerical evaluations. That this result will hold for any
order of multiplication follows from the commutativity
of polynomial multiplication. The same argument goes
through for P2 and P4.

D. . . . and when it comes to use

Let us now look at n of the form n = 2p, where p is
not a power of 2. In this case we find that each of our
three products can be rewritten as

P1 = Up−1(Y/2)⊕Up−1(Y/2) (9)

P2 = (2Tp(Y/2))⊕Up−1(Y/2) (10)

P4 = (2Tp(Y/2))⊕ (2Tp(Y/2)) (11)

or in the terminology of Section A3 of Appendix A

P1 = Sp−1(Y )⊕ Sp−1(Y ) (12)

P2 = Cp(Y )⊕ Sp−1(Y ) (13)

P4 = Cp(Y )⊕ Cp(Y ) (14)

We now have several choices regarding how to compute
our Pi:s.
A first way to compute our products is to use the obser-
vation of Corollary III.2 in combination with our know-
ledge of the irreducible factors of Cp and Sp to define
several intermediate polynomials

P1,h = Sp−1(Y )⊕Gh(Y ) =
∏

Sp−1 (X2i) (15)

P2,h = Cp(Y )⊕Gh(Y ) =
∏

Cp (X2i) (16)

P4,h = Cp(Y )⊕ Fh(Y ) =
∏

Sp−2 (X2i−1) (17)

where the products range over the set of i:s corresponding
to h, see the Appendix. We now have that

P1 =
∏

h

P1,h P2 =
∏

h

P2,h P4 =
∏

h

P4,h

The corollary implies that each Pi,h will be a polynomial
with integer coefficients and so we can return to integer
coefficients after each Pi,h has been computed. We also
note that all the computations performed when comput-
ing P1,h, and similarly for the other products, can be per-
formed in the splitting field ofGh(x). Here we can use the
multiplication rule defined earlier to compute products of
our γt as formal variables. We recall that the splitting
field K(α) of Gh is generated by some root α of Gh, this



means that once we have expanded the product for P1,h
we will have a polynomial in Y and α with integer coeffi-
cients. Since the Galois group G(α) acts transitively on
the powers of α and the value of P1,h is invariant un-
der this action we find that the coefficients of the powers
of α in the coefficient of Y k must all be equal and our
polynomial thus has terms of the form

(a+ b(
∑

j

bjα
j))Y k

where the bj are either 0 or 1. We can now evaluate each
sum

∑

j bjα
j to an integer and we will have our desired

polynomial, computed without need for numerics.
As a second alternative we can make full use of the
factorisations of Cp and Sp−1 to define products

P1,h,k = Gh ⊕Gk (18)

P2,h,k = Fh ⊕Gk (19)

P4,h,k = Fh ⊕ Fk (20)

with

P1 =
∏

h,k

P1,h,k P2 =
∏

h,k

P2,h,k P4 =
∏

h,k

P4,h,k.

As before each of these polynomials will have integer
coefficients and we can compute each polynomial using
either the multiplication rule as above or, for low degree
polynomials, make use of the methods described in the
proof of Theorem III.1. Breaking the polynomials into
small pieces like this will save us a lot in memory usage
and we will be able to return to integer coefficients at the
earliest possible stage. If we look at the products for P1
and P4 we can note another possible optimisation. These
products can be rewritten as

P1 =
∏

h,k

P1,h,k =

(

∏

h<k

P1,h,k

)2

2p−2Sp−2(Y/2) (21)

P4 =
∏

h,k

P4,h,k =

(

∏

h<k

P1,h,k

)2

2pCp(Y/2) (22)

We can thus compute only about half as many products
and then square the resulting polynomials instead. In
case p is an odd number we can take this even further by
noticing that now the factors of Up−1(x/2) come in pairs,
so that if q(x) is a factor then q(−x) is also a factor. Thus
we can compute half of the products just by evaluating
the other half in −x.

IV. SUMMING IT UP, BOTH STRAIGHT AND

ROUND

Our final step is to take the proper linear combination
of the

√
Ai:s in order to get Z0. Here we are faced with

two choices. There is one choice of signs which gives us

the generating function for the set of Euler subgraphs [21]
of size k of Cm × Cn, this is the classical approach fol-
lowing Kasteleyn and Kaufman, however there is also an-
other choice of signs which gives us the generating func-
tion for the number of states of energy k on Cm × Cn.
For a fixed energy k these numbers will be equal, apart
from a factor 2, for a large enough grid, k < min{m,n},
but for a finite grid they will differ for most values of k.
The first thing to consider here is the fact that we
have to take a formal square root

√
Ai in order to get

the polynomials we wish to add. The square root of a
polynomial is unique up to the choice of sign, just as it
is for numbers, and we need some way to see which sign
is right in our context. This problem is solved as soon
as we realise that

√
Ai is in fact a generating function in

itself, counting weighted Euler subgraphs of our grid [7].
Using this fact we see that the first k = min{m,n} − 1
coefficients should be positive for all four

√
Ai:s and so

our earlier choice of sign is correct.
In order not to make our presentation too long we will
now make use of some facts from chapters 4 and 5 of [7].
From [7] we know that if we take the linear combination

1

2

(

−
√

A1 +
√

A2 +
√

A3 +
√

A4

)

we get the generating function for the number of Euler
subgraphs of Cm × Cn and that these are typically con-
sidered equal in number to Ising states of a correspond-
ing energy by virtue of the purported self-duality of the
square grid. What is typically not mentioned is that this
duality work only for selfdual planar graphs like Pm×Pn,
the product of two paths, and in this particular case only
for the infinite grid. (Note that a finite selfdual graph on
N vertices has 2N − 2 edges, which is not the case for
Pm×Pn.) To see this let us consider a cycle in Cm×Cn
which “goes around” the torus on which the graph is nat-
urally embedded, a non-contractible cycle in the language
of topology. In the dual graph this cycle will correspond
to a set of edges which does not form an edge-cut and
thus not to an Ising state on the dual graph. For cycles
shorter than k = min{m,n} this can not occur and so, by
duality, the first and last k− 1 coefficients will be equal.
However, the problem just described can be remedied
in a quite simple way. From basic topological graph the-
ory [11] we know that an Euler subgraph of our grid will
correspond to an Ising state on the dual graph if it either
does not contain a non-contractible cycle, being of kind
(0,0) in the terminology of [7] page 66, or contains an
even number of such cycles in each of the two possible
directions, being of kind (even,even). Making use of this
observation and the sign table on page 66 of [7] we deduce
that

1

2

(

√

A1 +
√

A2 +
√

A3 +
√

A4

)

will give us the generating function for the set of Euler
subgraphs of the right kind and so, by duality, the gen-
erating function for Ising states with a given energy.



V. IMPLEMENTATION, MORE OF THE

PRACTICAL DETAILS

Here we comment on how to perform some of the cal-
culations described so far in practice and how to verify
that we in the end have the correct answer.

A. Making the initial polynomials

To calculate the product 3a to 3d we first calculate the
Chebyshev polynomials Un−1(x/2) and 2Tn(x/2), then
evaluate them in Y − γt where γt = 2αt and Y are con-
sidered formal variables. That is, we do not choose a
value for t at this stage. We end up with a polynomial
with integer coefficients and in two variables Y and γt.
Since γt represents 2 cos

tπ
n we have the following multi-

plication rule, as we already noted in IIIC:

γtγu = γt+u + γt−u

and for squaring this simplifies to

γ2t = γtγt = γ2t + γ0 = γ2t + 2

Using this rule we can transform the polynomial to a
polynomial linear in γt1 , γt2 , . . .
By using the symmetries of the cos-function we can
further reduce the index of γt to the interval 0 ≤ t ≤ n/2.
This reduces the number of γ-variables and the memory
consumption of our calculation. This means that we are
now working with signed roots rather than the original
roots.
In order to make sure that all the γtj represent non-
rational zeros, as required for our conclusions based on
the Galois group to apply, we also make use of the rules,

γ0 = 2, γn/2 = 0, γn/3 = 1.

These are the only indices which correspond to rational
values of the cos-function, see e.g. [12].
Should we like to use one of the more optimised ver-
sions of the algorithm, and work with Gh and Fh instead,
we can obtain the needed polynomials e.g. by factoring
the respective Chebyshev polynomials in Mathematica.

B. Multiplying the polynomials

Next we multiply all the polynomials and use the above
rules to multiply γt. In this way we will end up with a
polynomial in Y and our γtj :s with terms of the form

(a+ b(
∑

j

bjγtj ))Y
k.

We now evaluate the appearing sums of the form
∑

j bjγtj , either using known formulae for trigonometric

sums like

n
∑

k=0

cos(kx) =
cos
(

nx
2

)

sin
(

(n+1)x
2

)

sin x2
,

or “cheating” by evaluating them numerically, rounding
to the actual integer, and substituting the values back
into the polynomial. To use numerics at this stage is
actually safe since the sums have few terms, all of similar
and small size.
The specific order of multiplication described earlier
for the case when n is a power of 2 has some practical
advantages as well. Since at each stage we halve the de-
nominator we also reduce the number of cos-terms in our
polynomials. This means that memory usage is reduced
and since there are fewer terms we also save some time
in the multiplication of coefficients.
When n is not a power of 2 it is noteworthy that since
the number of irreducible factors of the Chebyshev poly-
nomials depend on the divisors of the side length of our
grid we can end up with large differences in the amount of
work needed to compute the partition function for grids
of nearly equal sides. For example we expect the 510-
grid to be significantly easier to handle than the 512-grid.
Thus some care should be taken in the choice of grid side,
when one is free to do so.

C. Substituting back to z

To get back to a polynomial in z we have to substitute
back

Y = a2

b =
(1+z2)2

z(1−z2)

This is a rational function in z and we would like to
avoid working with rational functions and work only with
polynomials. This is accomplished by using the Horner
form of the polynomial [13]. Since we know that the
answer is a polynomial and we multiply by a large enough
power of b = z(1− z2) we have the following scenario

b2p
2

Y (c0 + Y (c1 + . . . Y (c2p2−1 + c2p2(Y )))) =

= b2p
2

c0(
a2

b + c1(
a2

b + . . . (c2p2−1 + c2p2(
a2

b )))) =

= c0(a
2bp

2−1 + c1(a
2b2p

2−2 + . . . (a2b+ c2p2(a
2))))

and by using the Horner rule for multiplication of poly-
nomials we end up only using polynomial arithmetic.

D. Squaring

We now square our polynomials. After that we mul-
tiply A1 and A2 with appropriate factors according to 3a
and 3c.
When n is large, say 200 or more, some care should be
taken here. First this stage is very suitable for parallel-
lisation, secondly since the coefficients of the polynomials



now become very large one should use an FFT-based mul-
tiplication algorithm when multiplying the coefficients,
such as the one implemented in [14].
When n is very large, say 500 or more with present day
machines, it becomes hard to handle the full polynomial.
The Ising polynomial for n = 512 would need around 8
gigabytes of disk space. However since one is usually in-
terested in some specific range of coefficients rather than
the whole polynomial one can settle for computing only
the needed range in the squaring process.

E. The final linear combination

Finally we add our polynomials with either of the
choices of signs and we are now done.

F. Checksums, did we get it right?

In order to be reasonably certain that our calculated
polynomial is correct we will also make some checksums.
Here we focus on Z as the generating function for the
number of Ising states of a given energy, with exponents
running between −2mn and 2mn.
The first test to make is of course that the coefficients
sum to 2mn, and more generally we make use of the mo-
ments µk of the density of states to verify our calcula-
tions. The generating function for the number of states
with a given energy is Z(G, z) and thus the moment gen-
erating function is Z(G, exp(K)) = Z(G,K).
Since the first k = min{m,n} − 1 Taylor coefficients
of the free energy F(K) for our finite m × n grid coin-
cide with the first k Taylor coefficients of F∞(K) for the
infinite grid (see e.g. [15]) and F(K) is the exponential
generating function for the moments, see [16], we have
that the first k derivatives of exp(mnF∞(K)) are equal
to the first k moments of our F(x).
In fact we have

µj =
2mn
∑

i=−2mn

aii
j =
djZ(K)
dKj

∣

∣

∣

∣

K=0

for j ≤ k. We can now calculate these moments both
for the Onsager solution for the infinite grid and for our
polynomial and if the first k moments agree we have a
very strong indicator that no computational error has
occurred.
In practise it seems easier to calculate d

jZ(K)
dKj

∣

∣

K=0
by

using the Taylor expansion of the internal energy U(K)
and evaluate

dj

dKj
exp

(

mn

∫

U(K)dK
)

in the ring of formal power series.
A final test can be obtained by observing that the first
k Taylor coefficients of 1

mn logA1, . . . ,
1
mn logA4 are all

equal to those of F∞(x). This is the case since each of
the three polynomials count the small Euler subgraphs
with the same weight.

G. What have we done?

We have implemented our method both for n = 2k as
well as general even n using formal variables for γt but
not utilising full factorisation of the Chebyshev polyno-
mials.
We began by evaluating Chebyshev polynomials in the
formal variables in Mathematica. Next the Pi are com-
puted, substitution is made, squaring is done and finally
multiplication with the appropriate prefactors, all using
four separate F90-programs.
In this way we have computed the Ising partition func-
tion for the following n: all multiples of 4 up to 80, all
multiples of 16 from 80 to 128, all multiples of 32 from
128 up to 160 and finally for n = 256 and n = 320.
The smaller cases were handled on ordinary worksta-
tions. For n from 160 and upwards we used a linux-
cluster for the squaring stage. Computation of the Pi
for the 256-grid was done on an SGI Origin3800, using
the large integer libraries of [14]. The squaring stage for
the 256-grid took the equivalent of 30 CPU days on an
Athlon MP2000+ (1.667Ghz).
For = 160 and n = 320 we used the full Galois method.
The factor polynomials were computed using Mathemat-
ica on a Macintosh, the larger products giving the Pi,k
and the substitutions were done a Linux workstation, and
the final multiplications and squarings were done on a
Linux cluster. For n = 320 the final multiplications and
squarings took a total of 165 CPU days. The polynomial
itself takes up 1.86Gb of disk space.
The polynomials can be downloaded via the
papers homepage at: http://abel.math.umu.se/
Combinatorics/ising.html

Here we can also mention that in the course of com-
puting these polynomials our checksums as described
above have identified one faulty compiler, a malfunction-
ing hard disk as well as a bug in a well used standard
Fortran package. A testimony to both how sensitive to
software and hardware errors an exact computation like
this is, as well as to the accuracy of our check sums.

VI. DEFINITION OF QUANTITIES

Having computed the partition function for a number
of grids our aim is now to do an analysis of the data.
The quantities divide into two groups; those expressed in
terms of the coupling K, and those expressed in terms of
the energy ν. To the first category belongs the free en-
ergy F(K) and its derivatives, the second category con-
tains the entropy S(ν) and its derivatives. Since the free
energy depends on the entire sequence of coefficients ai
whereas the entropy depends on only one ai, we will see



some different behaviour. Note that asymptotically we
may translate between K and a corresponding ν through
the relation ν = U(K)/2. For example, we may write
S(νc) = F(Kc) − Kc U(Kc) to obtain the asymptotic
value of the entropy at the critical point, but this doesn’t
throw any light on how this value scales with the size of
the grid. Quantities depending on couplingK are written
in a calligraphic style, e.g. F(K), while those depending
on energy, e.g. S(ν) are written in a normal style.
Whenerver logarithms are used they are natural logar-
ithms in base e.

A. Entropy and coupling

We define the entropy at relative energy ν = i/2mn as

S(ν) =
log ai
mn

(23)

Should we desire the entropy at some energy where ai is
not defined then we will happily circumvent this problem
with linear interpolation. The coupling K is defined as

K =
−1
2
S′(ν) (24)

This is in line with the maximum term method (see [17]
volume 1 chapter 2.6) which could give us an alternative
definition. Consider the terms in the sum Z =

∑

i aiz
i.

Given a number z we assume that there is a maximum
term aiz

i such that

ai−kz
i−k ≤ aizi ≥ ai+kzi+k

where k is the difference in energy between two consec-
utive levels of energy. From this inequality we obtain

ai−k
ai
≤ zk ≤ ai

ai+k

It follows also, as an aside, that ai−kai+k ≤ a2i , i.e. the
sequence is log-concave at energy i. Assuming now that
z = eK we have that K is a number in the interval

1

k
log
ai−k
ai
≤ K ≤ 1

k
log

ai
ai+k

where we let the lower bound be denoted by K and the
upper bound byK. Consider now the derivative S′ which
we define to be

S′
(

i+ k/2

2mn

)

=
S
(

i+k
2mn

)

− S
(

i
2mn

)

k/2mn
=

2mn

mnk
(log ai+k − log ai) =

−2
k
log

ai
ai+k

= −2K

Note that we will associate the derivative to the middle
of i/2mn and (i+k)/2mn since we are dealing with data
at discrete points, though this will make little difference
for large grids.

As the grid grows we expect that K → K making K a
well-defined number in the limit. Alternatively we may,
as we have done, associate K with the upper bound K.
This has the benefit of making the coupling well-defined
for all finite systems rather than a number in an interval
that exists (possibly) only in the limit.

B. Physical quantities

For the physical quantities we evaluate the partition
function Z in eK and write Z(K) for simplicity. We
assume the Boltzmann distribution on the states, that is

Pr(σ) =
eK E(σ)

Z and Z =
∑

σ

eKE(σ)

so that the sum of the probabilities becomes 1. The de-
rivative then becomes

∂ logZ(K)
∂K

=
Z ′
Z =

∑

i ai i e
iK

Z =
∑

i

iPr(i) = 〈E〉

where 〈·〉 denotes the expected value. Analogously for
the second derivative we get

∂2 logZ(K)
∂K2

=
Z ′′
Z −

(Z ′
Z

)2

= 〈E2〉 − 〈E〉2 = var (E)

that is, the variance of E. We define the following phys-
ical quantities

free energy F(K) = 1

mn
logZ(K)

internal energy U(K) = ∂F
∂K

specific heat C(K) = K2 ∂U
∂K

entropy S(K) = F −K U

We try the reader’s patience here somewhat by using a
non-standard, yet clean, simple and dimensionless, defin-
ition of the free energy and entropy. That they are intern-
ally consistent follows, again, from the maximum-term
method. For a large system we simply expect a given
coupling K to correspond to a certain energy E and a
term that dominates the partition function, thus having
logZ(K) ≈ log aE eK E . This gives

F(K) ≈ 1

mn
log aE e

K E =
log aE
mn

+K
E

mn
= S +K U

so that S(E/2mn) ≈ S(K) = F(K)−K U(K).

C. The Onsager solutions

For completeness we shall state the Onsager solutions
which we will view as the limit functions as m,n → ∞.



Let K1 be the complete elliptic integral of the first kind
defined by

K1(x) =
∫ π/2

0

(1− x sin θ)−1/2dθ

Let K2 be the complete elliptic integral of the second
kind defined by

K2(x) =
∫ π/2

0

(1− x sin θ)1/2dθ

The free energy for the infinite grid, depicted in Figure
1, is

F(K) = log 2 + 1

2π2
×

∫ π

0

∫ π

0

log
[

cosh2(2K)− sinh(2K)(cosu+ cos v)
]

dudv

Define z as

z =
2 sinh(2K)

cosh2(2K)

Then the internal energy for the infinite grid , depicted
in Figure 1, is

U(K) = coth(2K)
(

1 +
2

π
K1(z2)(2 tanh2(2K)− 1)

)

and the specific heat for the infinite grid, depicted in
Figure 2 is

C(K) = 2
π
K2 coth2(2K)×

[

2K1(z2)− 2K2(z2)− 2(1− tanh2(2K))
(π

2
+K1(z2)(2 tanh2(2K)− 1)

)]

We shall need the following constants, where Kc is the
critical coupling and G ≈ 0.915966 is Catalan’s constant:

Kc =
1

2
log(1 +

√
2) ≈ 0.440687

Fc =F(Kc) =
log 2

2
+
2G

π
≈ 0.929695

Uc =U(Kc) =
√
2 ≈ 1.414214

Sc =S(Kc) =
log 2

2
+
2G

π
−
√
2Kc ≈ 0.306470

VII. THE FREE ENERGY AND ITS

DERIVATIVES

Henceforth we will only consider the case m = n. The
values at Kc of the free energy etc. is shown in Table I
along with the maximum value of C and the location of

0.5 1 1.5 2

0.8

1.2

1.4

1.6

0.5 1 1.5 2

0.5

1

1.5

2

FIG. 1: (Color online) Free energy F(K) (top) and internal
energy U(K) (bottom) vs K/Kc for the infinite grid.

the maximum. We denote by K∗n the location of the
maximum of Cn.
In Figure 3 we show how F and U differ from their
respective critical values as n increases. It was shown by
Ferdinand and Fisher [18] how these differences should
behave:

Fn(Kc)− Fc ∼
1

n2
log
(

21/4 + 2−1/2
)

≈ 0.639912
n2

Un(Kc)− Uc ∼
2

n

θ2 θ3 θ4
θ2 + θ3 + θ4

≈ 0.622439
n

Sn(Kc)− Sc ≈ −
0.274301

n
+
0.639912

n2

where the last formula follows from our definition of en-
tropy S = F − K U . For the constants θ2, θ3, θ4 we
have used the elliptic theta functions θ2 = θ2(0, e

−π) ≈
0.913579, θ3 = θ3(0, e

−π) ≈ 1.08643 and θ4 =
θ4(0, e

−π) ≈ 0.913579.
If we fit a straight line through the origin and the last
point (n = 320) for the free energy it will have formula
0.639913x, where x = 1/n2, which matches well indeed
with the value in [18]. Analogously, for the internal en-
ergy we get 0.622437x, where x = 1/n, again only a
slight deviation in the sixth decimal.



0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.96 0.98 1.02 1.04

1.5

2

2.5

3

3.5

4

FIG. 2: (Color online) Entropy S(K) (top) and specific heat
Cn(K) (bottom) for n = 16, 32, 64, 96, 128, 160, 256, 320 and
the infinite grid vs K/Kc.

A. Specific heat

The specific heat should go to infinity with logarithmic
speed if we stay close to Kc. It was shown by Onsager [3]
that

max Cn,∞ = A log n+B∞ + o(1)

A =
2

π
(log cot

π

8
)2 ≈ 0.494539

B∞ = A

(

log
25/2

π
+ γE −

π

4

)

≈ 0.187903

where γE ≈ 0.5772 is Euler’s gamma. However, it should
be noted that the B-constant depends on the shape of
the grid. Onsager’s grid has shape n ×∞. Also, it will
depend on whether we are looking at the critical point
or at the maximum. For an n× n-grid we have, and we

n Fn(Kc) Un(Kc) Sn(Kc) Cn(Kc) max Cn K∗n

4 0.970120 1.56562 0.280170 0.78327 0.81646 0.410012

8 0.939715 1.49159 0.282392 1.14556 1.19184 0.423374

12 0.934143 1.46596 0.288114 1.35295 1.40391 0.428687

16 0.932196 1.45306 0.291850 1.49870 1.55220 0.431498

20 0.931296 1.44531 0.294367 1.61116 1.66628 0.433239

24 0.930807 1.44013 0.296159 1.70273 1.75898 0.434424

28 0.930512 1.43643 0.297494 1.77997 1.83706 0.435282

32 0.930320 1.43366 0.298526 1.84677 1.90451 0.435933

36 0.930189 1.43150 0.299346 1.90561 1.96386 0.436444

40 0.930095 1.42977 0.300014 1.95818 2.01686 0.436855

44 0.930026 1.42836 0.300568 2.00570 2.06473 0.437194

48 0.929973 1.42718 0.301034 2.04906 2.10839 0.437477

52 0.929932 1.42618 0.301432 2.08891 2.14850 0.437718

56 0.929899 1.42533 0.301777 2.12579 2.18561 0.437925

60 0.929873 1.42459 0.302077 2.16012 2.22013 0.438106

64 0.929852 1.42394 0.302341 2.19221 2.25239 0.438264

68 0.929834 1.42337 0.302575 2.22235 2.28269 0.438403

72 0.929819 1.42286 0.302784 2.25076 2.31123 0.438528

76 0.929806 1.42240 0.302972 2.27762 2.33822 0.438639

80 0.929795 1.42199 0.303142 2.30310 2.36381 0.438740

96 0.929765 1.42070 0.303682 2.39362 2.45470 0.439060

112 0.929746 1.41977 0.304072 2.47010 2.53145 0.439289

128 0.929734 1.41908 0.304366 2.53633 2.59789 0.439462

160 0.929720 1.41810 0.304781 2.64695 2.70880 0.439705

256 0.929705 1.41664 0.305408 2.87979 2.94210 0.440071

320 0.929701 1.41616 0.305619 2.99027 3.05275 0.440193

TABLE I: Values at Kc and extremal data on C.

quote this from [18],

max Cn = A log n+Bmax + o(1)
Cn(Kc) = A log n+Bc + o(1)

K∗n −Kc ∼
−0.36029Kc

n
=
−0.15878
n

where Bmax ≈ 0.201359 and

Bc = B∞ −
(log cot π8 )

2

θ2 + θ3 + θ4
×

×
(

4

π

4
∑

i=2

θi log θi +
θ22 θ

2
3 θ
4
4

θ2 + θ3 + θ4

)

≈ 0.138150

The authors of [18] do not give exact expressions for Bmax
or the constant −0.36029 above.
A curious fact which we would like to mention, see [3]
and [18], is that for an oblong grid such as an n×∞-grid
or indeed, perhaps surprisingly, an n× 3.1393n-grid the
difference between K∗ and Kc is of the order logn/n

2

rather than 1/n.
So let us compare our data with theory. The upper
curve of the top panel in Figure 4 shows max Cn−A log n



0.00005 0.0001 0.00015 0.0002 0.00025

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.002 0.004 0.006 0.008 0.01 0.012 0.014

0.002

0.004

0.006

0.008

0.01

FIG. 3: (Color online) Top: Fn(Kc) − Fc vs 1/n2. Bottom:
Un(Kc)− Uc vs 1/n.

versus 1/n. A straight line fitted through the last two
points (n = 256, 320) gives 0.201274− 0.377915x, where
x = 1/n. Our constant deviates in the fourth decimal
from the Bmax given in [18]. The lower curve shows
Cn(Kc) − A logn together with its similarly fitted line
0.138149−0.170816x, a near-perfect match with the con-
stant prescribed above. The bottom panel of Figure 4
shows how K∗n differs from Kc. A straight line fitted
through the origin and the last point (n = 320) gives
−0.157888x, again a small deviation. In the plot we use
the line −0.15878x, a very good fit.

VIII. THE ENTROPY AND ITS DERIVATIVES

In this section we will do a more thorough investiga-
tion of the entropy as defined in Equation 23. To obtain
limit curves we will need to translate between relative
energy ν and coupling K. This is done with the relation
ν = U(K)/2 where U(K) is Onsager’s formula and this
also gives us the critical energy νc = 1/

√
2 ≈ 0.7071. The

plots in Figures 5 and 6 shows the entropy and its deriv-
atives with respect to the relative energy ν. By definition
we have S = F −K U . If we then associate S(K) with
ν(K) then we can plot a limit curve of the entropy versus

0.002 0.004 0.006 0.008 0.01 0.012 0.014

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.0020.0040.0060.008 0.01 0.0120.014

-0.0025

-0.002

-0.0015

-0.001

-0.0005

FIG. 4: (Color online) Top: maxCn − A logn and Cn(Kc) −
A logn vs 1/n. Bottom: K∗n −Kc vs 1/n.

the relative energy. By definition, we also have

K =
−1
2
S′(ν)

and since

C = K2 ∂U
∂K
=

(−1
2
S′(ν)

)2
1

∂K/∂U

it follows that

C(ν) = 1
4
(S′(ν))

2 1
−1
2 S

′′(ν) ∂ν/∂U =
−(S′(ν))2
S′′(ν)

though this is of course only valid for an infinite grid. We
can use this last formula though to give us a limit curve
for the second derivative of the entropy, i.e. asyptotically
we have

S′′(ν) =
−4
U ′(K)

which is then plotted versus the energy ν(K). Continuing
in the same spirit with the third derivative we obtain the
limit

S(3)(ν) =
8U ′′(K)
(U ′(K))3



-1 -0.5 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

FIG. 5: S320(ν) and S
′
320(ν).

These last two formulae are used in the plots of Figure 6.

Figure 6 shows how the second and third derivative
behaves near νc. Apparently the second derivative ap-
proaches 0 from below. Since the specific heat goes to
infinity as K → Kc for an infinite grid, which corres-
ponds to ν → νc = 1/

√
2, while S′ → −2Kc it is clear

that S′′ → 0 at that point also. Actually, the formula
above suggests the following rough estimate

S′′n(νc) =
−(S′n(νc))2
Cn(Kc)

∼ −4K
2
c

A log n
=
−π
2 log n

and of course the same result for the maximum S′′n. Fig-
ure 8 gives that this could be a reasonable estimate for
very large grids though not for n < 1000. In fact,
the maximum has only started to approach zero when
n = 32.
In Figure 7 we see how the entropy at the critical
point νc and its derivative approaches their limits Sc and
−2Kc respectively. Beginning with the entropy Sn(νc)
one might expect that its behaviour would be similar to
that of the free energy. However, whereas the difference
between the free energy and its critical value is of the

0.6 0.65 0.7 0.75 0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.65 0.7 0.75 0.8

-10

-7.5

-5

-2.5

2.5

5

7.5

10

FIG. 6: (Color online) S′′n(ν), Top, and S
(3)
n (ν), Bottom, for

n = 16, 32, 64, 128, 160, 256, 320,∞

order 1/n2 the corresponding difference for the entropy
seems to be slightly larger, possibly n−9/5. For the de-
rivative this difference seems to be of the order of n−5/4.
In the top panel of Figure 7 the difference Sn(νc) − Sc
versus n−9/5 is displayed together with the straight line
−1.91x. The bottom panel shows S′n(νc) + 2Kc versus
n−5/4 together with 0.425x.

The top panel of Figure 8 shows maxS′′n versus 1/ log n
with the fitted polynomial −1.56x+0.32x2+5.4x3 and
the straight line −π x/2. A similar behaviour is of course
found for S′′n(νc) but is better fitted by the polynomial
−1.56x+0.17x2+4.3x3. The bottom panel shows ν∗n−νc
versus n−5/6 and the line −0.44x, fitted through the ori-
gin and the last point. It should also be stated that the
fourth derivative at ν∗ obviously grows to the negative
infinity, see the bottom plot of Figure 6 and the corres-
ponding column in Table II. Its growth rate seems to be
on the order of n19/15 or thereabout. Assuming this, a
straight line fitted through the last four points gives that
the fourth derivative at ν∗n is −65 − 1.03n19/15, see top
plot of Figure 9. The bottom plot shows Kn(ν

∗) − Kc
for each grid versus n−21/20 and the line −0.249x.



n Sn(νc) −S′n(νc) −S′′n(νc) −maxS′′n −S(4)n (ν∗n) ν∗n

12 0.289122 0.855602 0.328177 0.242751 87.6930 0.652778

16 0.295499 0.864776 0.340533 0.275587 95.2653 0.664062

20 0.298843 0.869474 0.341183 0.288223 104.431 0.675000

24 0.300829 0.872249 0.338620 0.293102 119.379 0.677083

28 0.302111 0.874054 0.334909 0.294729 132.302 0.681122

32 0.302991 0.875309 0.330880 0.294656 146.386 0.683594

36 0.303622 0.876225 0.326890 0.293712 161.361 0.685185

40 0.304091 0.876920 0.323030 0.292304 175.026 0.687500

44 0.304450 0.877463 0.319365 0.290661 189.577 0.689050

48 0.304732 0.877897 0.315910 0.288886 204.967 0.690104

52 0.304957 0.878252 0.312658 0.287076 221.071 0.690828

56 0.305139 0.878546 0.309620 0.285273 236.062 0.691964

60 0.305290 0.878793 0.306759 0.283497 251.792 0.692778

64 0.305416 0.879004 0.304070 0.281763 268.220 0.693359

68 0.305522 0.879186 0.301537 0.280082 283.638 0.694204

72 0.305612 0.879344 0.299146 0.278455 299.752 0.694830

76 0.305690 0.879482 0.296885 0.276878 316.558 0.695291

80 0.305757 0.879604 0.294745 0.275359 333.999 0.695625

96 0.305954 0.879974 0.287189 0.269811 402.297 0.697266

112 0.306077 0.880224 0.280900 0.265004 473.012 0.698501

128 0.306161 0.880403 0.275552 0.260798 547.528 0.699341

160 0.306263 0.880639 0.266858 0.253768 703.101 0.700625

256 0.306381 0.880962 0.249667 0.239297 1219.53 0.702759

320 0.306411 0.881060 0.242063 0.232702 1603.41 0.703496

TABLE II: Entropy data.

IX. THE LOG-CONCAVITY POINT

Here we take a quick look at a finite-size phenomena
which occurs at high energies. If we consider the plot in
Figure 10 of the coupling K16(ν) = −S′16(ν)/2 we note
an irregular behaviour at about ν ≈ 0.87. For larger
grids this will move closer to 1.

This is the energy where the sequence ai stops be-
ing log-concave. We will define this point as the largest
ν = i/2n2 such that ai−4 ai+4 ≤ a2i and denote it by
ν̃n. The table in Figure 10 shows where this energy
is located. In Figure 11 we see 1 − ν̃n versus n−19/15
together with the line 3.96x. The coupling Kn = −S′n/2
corresponding to this energy is displayed in the bottom
plot with the line (through n = 256, 320) 0.030+0.155x.

That K in this case grows as O(logn) is perhaps not
very surprising. Note that for high energies we know the
sequence of ai. Counting backwards from i = 2n

2 the ai-
sequence begins 2, 0, 2n2, 4n2, n4 + 9n2, . . . It seems also
that the largest value of 14 log

ai
ai+4

is obtained for i =

2n2 − 16 giving the coupling value 14 log n
2+9
4 ∼ 1

2 log n.

0.0001 0.0002 0.0003 0.0004 0.0005

-0.001

-0.0008

-0.0006

-0.0004

-0.0002

0.001 0.002 0.003 0.004 0.005

0.0005

0.001

0.0015

0.002

FIG. 7: (Color online) Top: Sn(νc) − Sc vs n−9/5. Bottom:
S′n(νc) + 2Kc vs n

−5/4.

X. THE LARGEST COEFFICIENT

In this section we will take a look at the largest coef-
ficient of the partition function. For all grids we have
looked at, this position is held by coefficient a0. How-
ever, a proof that this is generally true is still lacking. It
seems fairly safe though to assume, as we will here, that
maxi ai = a0. We begin by setting up two easy bounds.
First, obviously we have

a0 ≤
∑

i

ai = 2
n2

Second, the energy levels can take the values
0,±4, . . . ,±(2n2−8),±2n2, i.e. there are n2−1 energies.
If we distribute the mass 2n

2

on these levels then some
coefficient must be at least the average, i.e.

2n
2

n2
≤ 2n

2

n2 − 1 ≤ a0

It would seem appropriate to guess that a0 is of the inter-

mediate order 2n
2

/n. As we will see, mutatis mutandis,
this is just about perfect. The correct quantity to study
is

Qn =
a0

(

n2

n2/2

)



0.1 0.2 0.3 0.4

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0.005 0.01 0.015 0.02 0.025 0.03

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

FIG. 8: (Color online) Top: maxS′′n vs 1/ logn. Bottom:

ν∗n − νc vs n−5/6.

where, by Stirling’s formula,

(

n2

n2/2

)

∼
√

2

π

2n
2

n

that is, the guess from above.

The table and the plot in Figure 12 gives rather strong
evidence that Qn →

√
2. They are well fitted by the line

7
8

√
2x. To conclude, we conjecture that

a0 =
2√
π

2n
2

n

(

1 +
7

8n2
+O(

1

n3
)

)

XI. ASYMPTOTICS

Here we collect all statements on asymptotic behaviour
which are spread out through the text. Exact formulae
for the first four are given elsewhere in the article.

200 400 600 800 1000

-1200

-1000

-800

-600

-400

-200

0.002 0.004 0.006 0.008 0.01 0.012

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

FIG. 9: (Color online) Top: S(4)(ν∗n) vs n
19/15. Bottom:

Kn(ν
∗
n)−Kc vs n−21/20.

Fn(Kc)− Fc ∼ 0.639912n−2

Un(Kc)− Uc ∼ 0.622439n−1

Sn(Kc)− Sc = −0.274301n−1 + 0.639912n−2 +O(n−3)
Cn(Kc) = 0.494539 log n+ 0.138150 + o(1)
max Cn = 0.494539 log n+ 0.201359 + o(1)
K∗n −Kc ∼ −0.15878n−1

The following asymptotes and approximations should
be considered conjectural, i.e. guessed up to the given
precision. A similar caveat applies to the exponents on
n; they are simply chosen among the rationals with small
denominator.

Sn(νc)− Sc ∼ −1.91n−9/5

S′n(νc) + 2Kc ∼ 0.425n−5/4

S′′n(νc) ≈
−1.56
log n

+
0.17

log2 n
+
4.3

log3 n

maxS′′n(ν) ≈
−1.56
log n

+
0.32

log2 n
+
5.4

log3 n

maxS′′n(ν) ∼ S′′n(νc) ∼
−π
2 log n

S(4)n (ν
∗
n) ∼ −1.03n19/15



n ν̃n Kn(ν̃n)

32 0.949219 0.583526

40 0.962500 0.616059

48 0.970486 0.642342

64 0.979492 0.683126

80 0.984375 0.714141

96 0.987847 0.743054

112 0.989796 0.763426

128 0.991455 0.784164

160 0.993594 0.818101

256 0.996460 0.888827

320 0.997344 0.923393

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

FIG. 10: (Color online) Top: Data on ν̃n. Bottom: Kn(ν) for
n = 16 and n =∞.

Kn(ν
∗
n)−Kc ∼ −0.249n−21/20

ν∗n − νc ∼ −0.442n−5/6

1− ν̃n ∼ 3.96n−19/15
Kn(ν̃n) ∼ 0.155 log n

a0 =
2√
π

2n
2

n

(

1 +
7

8n2
+O(

1

n3
)

)

APPENDIX A: CHEBYSHEV POLYNOMIALS

We will now develop some facts about Chebyshev poly-
nomials that we make use of in the main body of the
paper. For further information we recommend [19]. We
begin with some basics:

Definition A.1. The Chebyshev polynomials of the first
kind are defined as

Tn(x) = cos(n arccosx) = cosnθ, x = cos θ, (A1)

and

0.001 0.002 0.003 0.004 0.005

0.005

0.01

0.015

0.02

2 3 4 5

0.2

0.4

0.6

0.8

1

FIG. 11: (Color online) Top: 1 − ν̃n vs n−19/15. Bottom:
Kn(ν̃n) vs logn.

Definition A.2. The Chebyshev polynomials of the
second kind are defined as

Un−1(x) =
sin (n arccosx)√

1− x2
= 1
nT
′
n(x) =

sinnθ

sin θ
,

x = cos θ.

A useful fact which follows directly from the definition
is that

Tn(cos(x)) = cos(nx)

Since Tn(x) = cosnθ and cosnθj = 0 for

θj = θ
(n)
j =

(2j − 1)π
2n

, j = 1, . . . , n

we see that the points

ξj = ξ
(n)
j = cos θ

(n)
j = cos

(2j − 1)π
2n

, j = 1, . . . , n

satisfy

Tn(ξj) = 0, j = 1, . . . , n



n Qn

32 1.415424

40 1.414988

48 1.414751

64 1.414516

80 1.414407

96 1.414348

112 1.414312

128 1.414289

160 1.414262

256 1.414232

320 1.414226

0.00005 0.0001 0.00015 0.0002

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

FIG. 12: (Color online) Top: Data on Qn. Bottom: Qn−
√
2

vs 1/n2.

From this we can factor Tn(x) as

Tn(x) = 2
n−1

n
∏

j=1

(

x− cos (2j − 1)π
2n

)

(A2)

and Un(x) as

Un(x) = 2
n
n
∏

j=1

(

x− cos jπ
n+ 1

)

(A3)

1. Extremal points

It is also clear from A1 that |Tn(x)| ≤ 1 if |x| ≤ 1.
The points in this interval, when |Tn(x)| = 1, are called
the extrema of Tn(x). We know that cos kπ = (−1)k for
any integer k so if

φk = φ
(n)
k =

kπ

n
, k = 0, 1, . . . , n

the points

ηk = η
(n)
k = cosφ

(n)
k = cos

kπ

n
, k = 0, 1, . . . , n

satisfy

Tn(ηk) = (−1)k, k = 0, 1, . . . , n

This gives us the following products on closed form

n
∏

k=1

2

(

x− cos 2πk
n

)

= 2 (Tn(x)− 1) (A4)

and

n
∏

k=1

2

(

x− cos π(2k − 1)
n

)

= 2 (Tn(x) + 1) (A5)

2. The coefficients

If |t| < 1 then

∑

n≥0

tneinθ =
∑

n≥0

(teiθ)n =
1

1− teiθ =

=
1

1− t(cosnθ + i sinnθ) =

=
1− t cosnθ + ti sinnθ
(1− t cosnθ)2 + t2 sinnθ =

1− t cosnθ + ti sinnθ
1− 2t cosnθ + t2

On equating the real parts we obtain

∑

n≥0

tn cosnθ =
1− t cos θ

1 + t2 − 2t cos θ

or

1− tx
1− 2tx+ t2 =

∑

n≥0

tnTn(x)

the generating function for Tn(x). Using the definition
we find the generating function for Un(x),

1

1− 2tx+ t2 =
∑

n≥0

tnUn(x)

From this we obtain the following lemma:

Lemma A.3. The polynomials 2Tn(x/2) and Un(x/2)
have integer coefficients.

Proof. Using the generating function for Un(x/2) we
have:

1

1− 2tx2 + t2
=

1

1− tx+ t2 =
1

1− t(x− t) =

=
∑

k≥0

(t(x− t))k =
∑

k≥0

tk(x− t)k

and for fixed n the coefficients for tn are polynomials in
x with integer coefficients. Multiplying by 1 − tx2 gives
the result for 2Tn(x/2).



We can use the formula in the proof above to explicit
give the coefficients for the Chebychev polynomials as:

Tn(x) =
1

2

bn/2c
∑

k=0

(−1)k n

n− k

(

n− k
k

)

(2x)n−2k

Un(x) =

bn/2c
∑

k=0

(−1)k
(

n− k
k

)

(2x)n−2k

3. The Irreducible factors

We will now describe the irreducible factors of the
Chebyshev polynomials. We will state the results
without proofs, which the interested reader can find in
[19].
Rather than factoring the Chebyshev polynomials
themselves we will give the irreducible factors of Ck(x) =
2Tk(x/2) and Sk(x) = Uk(x/2), for k > 0. From Lemma
A.3 we know that these polynomials are monic and have
integer coefficients.
Given an odd divisor h of k let

Fh,k(x) =
∏

gcd(2j−1,2k)=h,1≤j≤k

(

x− 2 cos
(

(2j − 1)π
2k

))

.

Now Fh,k(x) will be an irreducible monic polynomial with
integer coefficients and

Ck(x) =
∏

h|k,h odd

Fh,k(x).

Given a divisor h of 2(k + 1) let

Gh,k(x) =
∏

gcd(j,2(k+1))=h,1≤j≤k

(

x− 2 cos
(

jπ

k + 1

))

.

Here Gh,k(x) will be an irreducible monic polynomial
with integer coefficients and

Sk(x) =
∏

h|(2(k+1)),1≤h≤k

Gh,k(x).

4. Two useful identities

We will also need the following facts about the Cheby-
shev polynomials:

Lemma A.4. Let Tn(x) and Un(x) be the Chebyshev
polynomials of the first and second kind. Then for n ≥ 1
we have the following.

For even indices of Tn(x):

2(T2(n+1)(x)− 1) = 4(x2 − 1)U2n(x)
2(T2n(x) + 1) = 4T

2
n(x)

and for odd indices of Tn(x):

1 + T2n+1(x) = (1 + x)(Un(x)−Un−1(x))2

1− T2n+1(x) = (1− x)(Un(x) + Un−1(x))2

Proof. Even indices:

2(T2(n+1)(x)− 1) = 22(n+1)
2(n+1)
∏

k=1

(

x− cos 2πk

2(n+ 1)

)

=

2n
n
∏

k=1

(

x− cos πk
n+ 1

)

2n
2n+1
∏

k=n+2

(

x− cos πk
n+ 1

)

× 22
(

x− cos π(n+ 1)
(n+ 1)

)(

x− cos 2π(n+ 1)
(n+ 1)

)

=

= 4(x2 − 1)U2n(x)2(T2n(x) + 1) = 22n
2n
∏

k=1

(

x− cos π(2k − 1)
2n

)

=

= 4 · 2n−1
n
∏

k=1

(

x− cos π(2k − 1)
2n

)

2n−1
2n
∏

k=n+1

(

x− cos π(2k − 1)
2n

)

= 4T2n(x)



Odd indices:

(1± x)(Un(x)∓ Un−1(x))2 = (1± x)(U2n(x) + U2n−1(x)∓ 2Un(x) Un−1(x)) =

=
1± x
1− x2

(

(1− T2n+1(x)) + (1− T2n(x))∓ 2 12 (T1(x)− T2n+1(x))
)

=

=
1± x
1− x2

(

2− 12 (T2n+2(x) + 1)− 12 (T2n(x) + 1)∓ x± T2n+1(x)
)

=

=
1± x
1− x2

(

(1∓ x)− 12 (T2n+2(x) + T2n(x))± T2n+1(x)
)

=

=
1± x
1− x2

(

(1∓ x)− 12 (2xT2n+1(x)− T2n(x) + T2n(x))± T2n+1(x)
)

=

=
1± x
1− x2 ((1∓ x)− xT2n+1(x)± T2n+1(x)) =

=
1± x
1− x2 ((1∓ x) + (1∓ x)T2n+1(x)) =

=
(1 + x)(1− x)
1− x2 (1± T2n+1(x)) = 1± T2n+1(x)

APPENDIX B: AN IMPLEMENTATION IN

MATHEMATICA

In this appendix we demonstrate a Mathematica pro-
gram which implements some of the calculations dis-
cussed in the main text. This implementation works for
grids with even side n and uses numerical evaluation at
the stage where γt is eliminated. The only optimisa-
tion from the paper used here is our formulation of the
products in terms of Chebyshev polynomials. For sides
less than about n = 80 it is actually faster to use a direct
numerical evaluation of the cosine-terms before the mul-
tiplication is performed. However once we get to around
n = 80 the need for high precision numerics makes that
numerical version slower than the version shown here.
A notebook demonstrating the Galois method is also
available at the papers homepage at http://abel.math.
umu.se/Combinatorics/ising.html

Let us start with the definition of the functions we will
use later to compute our three products P1, P2 and P4.

Multiply[p_,c_]:=

(* Applying the product rule for gamma_t *)

Module[{i,j,m,b},

FixedPoint[

Expand[#]

/.{

Power[c[i_,m_],b_]:>

(c[i,m])^Mod[b,2]*(2+c[2i,m])^Floor[b/2]/;b>=2,

c[i_,m_]*c[j_,m_]:>c[i+j,m]+c[i-j,m]}&,

p]

]

SymReduce[p_,c_]:= (* Reducing by symmetries *)

Module[{i,m},

p

/.c[i_,m_]:>c[-i,m]/;i<0

//.c[i_,m_]:>c[i-2m,m]/;i>2m

/.c[i_,m_]:>c[2m-i,m]/;i>m

/.c[i_,m_]:>-c[m-i,m]/;2i>m

/.{

c[i_,m_]:>0/;2i==m,c[i_,m_]:>1/;3i==m,

c[i_,m_]:>-1/;3i==2m,c[m_,m_]->-2,c[0,_]->2

}

]

RemoveCos[p_,c_,acc_]:=

Module[{i,j,x},

p/.c[i_,j_]:>N[2*Cos[i*Pi/j],acc]/.x_Real:>Round[x]

]

TakeProduct[polys_,e_,Y_,c_,z_,acc_]:=

Module[{a,b,prod},

prod=Fold[SymReduce[Multiply[#1*#2,c],c]&,1,polys];

Cancel[b^e*RemoveCos[prod,c,acc]/.Y->a^2/b]

/.{a->(1+z^2),b->z(1-z^2)}

]

The function Multiply implements the multiplication
and squaring rules for γt. SymReduce uses the symmet-
ries of cos to reduce the number of γt-variables needed.
RemoveCos uses high precision floating point arithmetic
(of accuracy acc) to evaluate the cos-functions and
then rounds the answer to the nearest integer. Finally,
TakeProduct takes a list of polynomials in the variables Y
and c (where c[i,j] represents 2 cos iπj ), multiply them

together, evaluates the cos-functions, using RemoveCos,

and finally does the substitution Y → (1+z2)2

z(1−z2) while mul-

tiplying with a high enough power of z(1− z2).
To be able to check the result later we also need the
function U(K) defined as follows:

U[K_]=FullSimplify[



Coth[2K](1+2/Pi*EllipticK[z^2](2*Tanh[2K]^2-1))

/.z->2*Sinh[2K]/Cosh[2K]^2,Element[K,Reals]

];

Let us do a worked example of how to use these func-
tions to compute a partition function and check the res-
ult. We begin by defining the size of our square grid:

(************ Input *************)

n=50;

This is the only parameter we need to set ourself,
everything else can now be calculated from this. We
next calculate some constants and the two polynomials
Up−1

(

Xt
2

)

and 2Tp
(

Xt
2

)

for a general t.

(*************** I **************)

p=n/2;

acc=Floor[N[p^2*Log[10,2]]];

U[Y_,t_]=

SymReduce[Multiply[ChebyshevU[p-1,(Y-a[t,n])/2],a],a];

T[Y_,t_]=

SymReduce[Multiply[2*ChebyshevT[p,(Y-a[t,n])/2],a],a];

We can now calculate A1, making use of our functions
TakeProduct and SymReduce. This is done in two steps
since we need to multiply with the appropriate “pre-
factors”. In this case p2 − 1 is a large enough power
of z(1− z2).
(************** A1) *************)

Module[{A1prod,A1},

A1prod=TakeProduct[

Table[SymReduce[U[Y,2i],a],{i,0,p}]

,p^2-1,Y,a,z,acc

];

A1=Expand[

(1+z^2)^2(-1-2z+z^2)(-1+2z+z^2)*A1prod^2

];

Z=A1;

]

We now calculate A2 in much the same way as A1. The
differences are the prefactors and that now the power of
z(1 − z2) is p2 − p for the bulk of the polynomials and
n = 2p for the factors. We also add 2A2 to Z since
A2 = A3 for a square grid and we do not want to waste
precious time calculating A3 separately.

(************** A2) *************)

Module[{A2prod,A2pre,A2},

A2prod=TakeProduct[

Table[SymReduce[T[Y,2i],a],{i,1,p-1}],

p^2-p,Y,a,z,acc

];

A2pre=TakeProduct[

{SymReduce[T[Y,n],a],SymReduce[T[Y,0],a]},

n,Y,a,z,acc

];

A2=Expand[A2pre*A2prod^2];

Z=Z+2*A2;

]

A4 is the simplest term to calculate since it does not
need any prefactors and such. The power of z(1− z2) is
p2.

(*************** A4) ************)

Module[{A4prod,A4},

A4prod=TakeProduct[

Table[SymReduce[T[Y,2i+1],a],{i,0,p-1}],

p^2,Y,a,z,acc

];

A4=Expand[A4prod^2];

Z=Expand[(Z+A4)/2];

]

Finally we verify the correctness of our resulting poly-
nomial by calculating the moment generating function
for the distributions of energies and compare it with the
infinite grid.

(************** Check *************)

s1=Simplify/@Integrate[Series[U[K],{K,0,n-1}],K];

s2=Simplify/@Series[Exp[n^2*s1],{K,0,n-1}];

s3=Simplify/@Series[Z/(2z)^(n^2)/.z->Exp[K]^2,{K,0,n-1}];

s2==s3

True

As you can see the two expressions are equal and it is
unlikely that any computational errors have occurred.

In Table III we give timings for various grid sizes run on
a Linux-machine with an Athlon 2000+ and 2GB RAM.
We have also included timings of Beale’s implementation,
run on the same machine.

n Our’s Beale’s Ratio

8 0.1 0.5 5

16 2.0 11.0 5.5

24 22.0 95.0 4.3

32 143.1 622.7 4.4

40 835.5 3010.5 3.6

48 2675.2 11223.9 4.2

56 8111.4 38118.9 4.7

64 20006.5 108331.3 5.4

TABLE III: Timing data.

ACKNOWLEDGMENTS

This work was supported by the Swedish Natural Sci-
ence Research Council, The Göran Gustafsson Found-
ation, and the National Graduate School in Scientific
Computing (NGSSC). We have used the computing fa-
cilities at Department of Mathematics Ume̊a University,
HPC2N Ume̊a, NSC Linköping, and PDC Stockholm.

[1] W. Lenz, Physik. Z. 21, 613 (1920). [2] E. Ising, Z. Physik 31, 253 (1925).



[3] L. Onsager, Phys. Rev. 65, 117 (1944).
[4] B. Kaufman, Phys. Rev. 76, 1232 (1949).
[5] P. Beale, Phys. Rev. 76, 78 (1996).
[6] P. Kasteleyn, in Graph theory and theoretical physics
(Academic press, 1967).

[7] B. McCoy and T. Wu, The two-dimensional Ising model
(Harvard University Press, 1973).

[8] B. Hartley and T. O. Hawkes, Rings, modules and linear
algebra (Chapman & Hall, London, 1980), ISBN 0-412-
09810-5, a further course in algebra describing the struc-
ture of abelian groups and canonical forms of matrices
through the study of rings and modules, a reprinting.

[9] A. Graham, Kronecker products and matrix calculus:
with applications (Ellis Horwood Ltd., Chichester, 1981),
ISBN 0-85312-391-8, ellis Horwood Series in Mathemat-
ics and its Applications.

[10] I. Stewart, Galois theory (Chapman and Hall Ltd., Lon-
don, 1989), 2nd ed., ISBN 0-412-34540-4; 0-412-34550-1.

[11] C. P. Bonnington and C. H. C. Little, The foundations
of topological graph theory (Springer-Verlag, New York,
1995), ISBN 0-387-94557-1.

[12] M. Laczkovich, Conjecture and proof (TypoTEX Kft.
Elektronikus Kiadó, Budapest, 1998), ISBN 963-7546-
88-X.

[13] D. E. Knuth, The art of computer programming. Vol. 2
(Addison-Wesley Publishing Co., Reading, Mass., 1981),
2nd ed., ISBN 0-201-03822-6, seminumerical algorithms,
Addison-Wesley Series in Computer Science and Inform-
ation Processing.

[14] D. H. Bailey, ACM Transactions on Mathematical Soft-
ware (TOMS) 21(4), 379 (1995), ISSN 0098-3500.

[15] B. Cipra, Amer. Math. Monthly 94, 937 (1987).
[16] G. R. Grimmett and D. R. Stirzaker, Probability and ran-

dom processes (The Clarendon Press Oxford University
Press, New York, 1992), 2nd ed., ISBN 0-19-853666-6;
0-19-853665-8.

[17] D. Lavis and G. Bell, Statistical mechanics of lattice sys-
tems (Springer, 1999).

[18] A. Ferdinand and M. Fisher, Phys. Rev. 185, 832 (1969).
[19] T. J. Rivlin, Chebyshev polynomials, Pure and Applied

Mathematics (John Wiley & Sons Inc., New York, 1990),
2nd ed., ISBN 0-471-62896-4, from approximation theory
to algebra and number theory.

[20] In the algebraic meaning of the word, not a physical field.
[21] An Euler subgraph is a subgraph where all vertices have

even degree.


