Computation of the Ising partition function for 2-dimensional square grids

Roland Häggkvist, ${ }^{1, *}$ Anders Rosengren, ${ }^{2, \dagger}$ Daniel Andrén, ${ }^{1, \ddagger}$ Petras Kundrotas, ${ }^{2, \S}$ Per Håkan Lundow, ${ }^{2, \llbracket}$ and Klas Markström ${ }^{1, * *}$
${ }^{1}$ Department of Mathematics, Umeå University, SE-901 87 Umeå, Sweden
${ }^{2}$ Department of Physics, AlbaNova University Center, KTH, SE-106 91 Stockholm, Sweden

(Dated: August 14, 2005)

Abstract

An improved method for obtaining the Ising partition function for $n \times n$ square grids with periodic boundary is presented. Our method applies results from Galois theory in order to split the computation into smaller parts and at the same time avoid the use of numerics.

Using this method we have computed the exact partition function for the 320×320-grid, the 256×256-grid, and the 160×160-grid, as well as for a number of smaller grids. We obtain scaling parameters and compare with what theory prescribes.

PACS numbers: $05.50 .+\mathrm{q}, 05.10 .-\mathrm{a}, 02.70 . \mathrm{wz}, 02.70 . \mathrm{Rr}$

I. INTRODUCTION

The Lenz-Ising model [1, 2] of ferromagnetism was solved in the 1-dimensional case by Ernst Ising in 1925 and in the (infinite) 2-dimensional case without an external field by Lars Onsager [3] in 1944. Somewhat later Bruria Kaufman [4] gave the zero field partition function for the $m \times n$-grid with periodic boundary. Beale [5] has made an easy-to-use program in Mathematica which implements this solution. Beale used this program to compute the partition function for the 32×32-grid, and with a modern desktop computer one can use this program to compute the partition function for the 64×64 grid in about 30 hours. We present an improved form of the algorithm where this computation now runs in under 6 hours, using a simple implementation in Mathematica. We use a Fortran implementation of this algorithm to compute the partition function for a large number of grids of side up to 128 , as well as the $160 \times 160,256 \times 256$ and 320×320-grid.

The graphs we are dealing with are the $m \times n$-grids with periodic boundary, i.e. the Cartesian product $C_{m} \times C_{n}$ of a cycle on m and n vertices respectively. The total number of vertices is then $m n$ and the number of edges is $2 m n$. A state σ is a function from the vertices to the set $\{-1,+1\}$. We let σ_{v} denote the state, or spin, of the vertex v. The energy of a state σ is $E(\sigma)=\sum_{u v} \sigma_{u} \sigma_{v}$ where the sum is taken over all edges. We then have that $-2 m n \leq E \leq 2 m n$, but note that the energy can not take any value in this interval. If both m and n are even then i can take the values $0, \pm 4, \pm 8, \ldots, \pm 2 m n$ except for $\pm(2 m n-4)$. The relative energy is defined as $\nu(\sigma)=E(\sigma) / 2 m n$, that is $-1 \leq \nu \leq 1$. We now define

[^0]the partition function as the formal Laurent polynomial
$$
Z(z)=\sum_{\sigma} z^{E(\sigma)}=\sum_{i} a_{i} z^{i}
$$
where the first sum is taken over all the $2^{m n}$ states. The second sum defines the coefficients a_{i} as the number of states at energy i. In graph theoretical language, a_{i} is the number of edge cuts of size $(2 m n-i) / 2$. However, it is common to work not with $Z(z)$ as defined here but rather $Z_{0}(z)=z^{m n} Z\left(z^{1 / 2}\right)$, which gives a polynomial with positive exponents between 0 and $2 m n$. In order to be consistent with our references we will do so too.

Whenever we need to distinguish between quantities for different grids we will subscript them with just an n or both m, n. Evaluating the partition function Z in the point $z=e^{K}$, where K is the coupling, gives the partition function $\mathcal{Z}(K)$ typically studied in statistical physics. Here $K=J / k_{B} T$ where J is the interaction energy, k_{B} is Boltzmann's constant and T is the absolute temperature. To avoid cluttering up our formulae we set $k_{B}=J=1$. From $\mathcal{Z}(K)$ we obtain e.g. the free energy $\mathcal{F}(K)$, the internal energy $\mathcal{U}(K)$ and the specific heat $\mathcal{C}(K)$; we shall define them properly later.

II. THE FINITE SIZE SOLUTION IN TERMS OF CHEBYSHEV POLYNOMIALS

Following Kaufman [4] and Kasteleyn [6] we know that the partition function for the square grid graph $C_{m} \times C_{n}$ can be expressed as a linear combination of four polynomials. These polynomials in turn are given by the Pfaffians of four matrices and can be calculated as the square roots of the corresponding determinants. So if A_{i} denote the mentioned determinants we have that

$$
Z_{0}\left(C_{m} \times C_{n}, z\right)=c_{1} \sqrt{A_{1}}+c_{2} \sqrt{A_{2}}+c_{3} \sqrt{A_{3}}+c_{4} \sqrt{A_{4}}
$$

Each A_{i} is a polynomial given by a double product over its roots. A comprehensive description of how to obtain these products and the general Pfaffian method is given in [7].

Let $\alpha_{t}=\cos \frac{\pi t}{n}, \beta_{t}=\cos \frac{\pi t}{m}, a=1+z^{2}$ and $b=$ $z\left(1-z^{2}\right)$. In terms of these variables the four A_{i} are

$$
\begin{aligned}
& A_{1}=\prod_{i=1}^{n} \prod_{j=1}^{m}\left(a^{2}-2 b \alpha_{2 i}-2 b \beta_{2 j}\right) \\
& A_{2}=\prod_{i=1}^{n} \prod_{j=1}^{m}\left(a^{2}-2 b \alpha_{2 i}-2 b \beta_{2 j+1}\right) \\
& A_{3}=\prod_{i=1}^{n} \prod_{j=1}^{m}\left(a^{2}-2 b \alpha_{2 i+1}-2 b \beta_{2 j}\right) \\
& A_{4}=\prod_{i=1}^{n} \prod_{j=1}^{m}\left(a^{2}-2 b \alpha_{2 i+1}-2 b \beta_{2 j+1}\right)
\end{aligned}
$$

Computing these products directly and then taking formal square roots is a quite arduous task and we want to find more efficient ways to do this. A first step in
this direction was taken by Beale [5] who made use of the fact that most of the roots of the A_{i} can easily be seen to be double roots and that one can avoid having to take square roots simply by restricting the index range in the products. Using a Mathematica program which evaluated the cosines numerically before performing the simplified products Beale computed the partition function of the 32×32 square grid.

Our goal is to perform these products even more efficiently, and with less risk for numerical errors, by using some further observations about the products which both allow us to avoid numerics and use fewer polynomial multiplications.

We start out by noting that the roots of the A_{i} are in fact sums of roots of Chebyshev polynomials, see Equations A4 and A5 of Appendix A. Here T_{n} and U_{n} are the Chebyshev polynomials of the first and second kind. Let $Y=\frac{a^{2}}{b}$ and $X_{t}=Y-2 \alpha_{t}$, we can now rewrite the products as:

$$
\begin{align*}
& A_{1}=\prod_{i=1}^{n} \prod_{j=1}^{m}\left(a^{2}-2 b \alpha_{2 i}-2 b \beta_{2 j}\right)=b^{n m} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(Y-2 \alpha_{2 i}-2 \beta_{2 j}\right)= \\
& =b^{n m} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(X_{2 i}-2 \beta_{2 j}\right)=b^{n m} \prod_{i=1}^{n} \prod_{j=1}^{m} 2\left(\frac{X_{2 i}}{2}-\beta_{2 j}\right)=b^{n m} \prod_{i=1}^{n} 2\left(T_{m}\left(\frac{X_{2 i}}{2}\right)-1\right) \tag{1}\\
& \begin{aligned}
A_{4}= & \prod_{i=1}^{n} \prod_{j=1}^{m}\left(a^{2}-2 b \alpha_{2 i+1}-2 b \beta_{2 j+1}\right)=b^{n m} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(Y-2 \alpha_{2 i+1}-2 \beta_{2 j+1}\right)= \\
& =b^{n m} \prod_{i=1}^{n} \prod_{j=1}^{m}\left(X_{2 i+1}-2 \beta_{2 j+1}\right)=b^{n m} \prod_{i=1}^{n} \prod_{j=1}^{m} 2\left(\frac{X_{2 i+1}}{2}-\beta_{2 j+1}\right)=b^{n m} \prod_{i=1}^{n} 2\left(\mathrm{~T}_{m}\left(\frac{X_{2 i+1}}{2}\right)+1\right)
\end{aligned}
\end{align*}
$$

The expressions for A_{2} and A_{3} are similar to A_{4} and A_{1}, the difference being the index of X_{t}. In A_{2} the index is $2 i$ and in A_{3} it is $2 i+1$.

We now restrict our discussion to the case when $n=m=2 p$. The cases for equal, but odd, sides or unequal sides are very similar to the current case and can be handled in the same way. We now use Lemma A. 4 of Appendix A to simplify the products further. From Equation 1 we get

$$
\begin{gathered}
A_{1}=b^{4 p^{2}} \prod_{i=1}^{2 p} 2\left(\mathrm{~T}_{2 p}\left(\frac{X_{2 i}}{2}\right)-1\right)=b^{4 p^{2}} \prod_{i=1}^{2 p}\left(X_{2 i}^{2}-4\right) \mathrm{U}_{p-1}^{2}\left(\frac{X_{2 i}}{2}\right)=b^{4 p^{2}} \prod_{i=1}^{2 p}\left(X_{2 i}^{2}-4\right) \prod_{i=1}^{2 p} \mathrm{U}_{p-1}^{2}\left(\frac{X_{2 i}}{2}\right)= \\
=b^{4 p^{2}} \prod_{i=1}^{2 p}\left(X_{2 i}+2\right)\left(X_{2 i}-2\right) \prod_{i=1}^{2 p} \mathrm{U}_{p-1}^{2}\left(\frac{X_{2 i}}{2}\right)=b^{4 p^{2}} \prod_{i=1}^{2 p}\left(Y-2 \alpha_{2 i}+2\right)\left(Y-2 \alpha_{2 i}-2\right) \prod_{i=1}^{2 p} \mathrm{U}_{p-1}^{2}\left(\frac{X_{2 i}}{2}\right)= \\
=b^{4 p^{2}} \prod_{i=1}^{2 p}\left((Y+2)-2 \alpha_{2 i}\right)\left((Y-2)-2 \alpha_{2 i}\right) \prod_{i=1}^{2 p} \mathrm{U}_{p-1}^{2}\left(\frac{X_{2 i}}{2}\right)=
\end{gathered}
$$

$$
\begin{aligned}
& =b^{4 p^{2}} 2\left(\mathrm{~T}_{2 p}\left(\frac{Y+2}{2}\right)-1\right) 2\left(\mathrm{~T}_{2 p}\left(\frac{Y-2}{2}\right)-1\right) \prod_{i=1}^{2 p} \mathrm{U}_{p-1}^{2}\left(\frac{X_{2 i}}{2}\right)= \\
& =b^{4 p^{2}} 4\left(\left(\frac{Y+2}{2}\right)^{2}-1\right) \mathrm{U}_{p-1}^{2}\left(\frac{Y+2}{2}\right) 4\left(\left(\frac{Y-2}{2}\right)^{2}-1\right) \mathrm{U}_{p-1}^{2}\left(\frac{Y-2}{2}\right) \prod_{i=1}^{2 p} \mathrm{U}_{p-1}^{2}\left(\frac{X_{2 i}}{2}\right)= \\
& =b^{4 p^{2}} Y^{2}\left(Y^{2}-16\right) \mathrm{U}_{p-1}^{2}\left(\frac{Y+2}{2}\right) \mathrm{U}_{p-1}^{2}\left(\frac{Y-2}{2}\right) \prod_{i=1}^{2 p} \mathrm{U}_{p-1}^{2}\left(\frac{X_{2 i}}{2}\right)= \\
& =b^{4 p^{2}} \frac{\left(1+z^{2}\right)^{4}\left(-1-2 z+z^{2}\right)^{2}\left(-1+2 z+z^{2}\right)^{2}}{b^{4}} \times \mathrm{U}_{p-1}^{2}\left(\frac{Y+2}{2}\right) \mathrm{U}_{p-1}^{2}\left(\frac{Y-2}{2}\right) \prod_{i=1}^{2 p} \mathrm{U}_{p-1}^{2}\left(\frac{X_{2 i}}{2}\right)
\end{aligned}
$$

Since all the terms are raised to an even power we can now take a formal square root by dividing each exponent by 2 , the correctness of this choice of sign in the square roots will be discussed in connection with the final linear combination of the polynomials.

$$
\begin{gather*}
\sqrt{A_{1}}=b^{2 p^{2}} \frac{\left(1+z^{2}\right)^{2}\left(-1-2 z+z^{2}\right)\left(-1+2 z+z^{2}\right)}{b^{2}} \times \mathrm{U}_{p-1}\left(\frac{Y+2}{2}\right) \mathrm{U}_{p-1}\left(\frac{Y-2}{2}\right) \prod_{i=1}^{2 p} \mathrm{U}_{p-1}\left(\frac{X_{2 i}}{2}\right)= \\
{\left[\text { Since: } X_{t}=X_{4 p-t}\right]=b^{2 p^{2}-2}\left(1+z^{2}\right)^{2}\left(-1-2 z+z^{2}\right)\left(-1+2 z+z^{2}\right) \mathrm{U}_{p-1}^{2}\left(\frac{Y+2}{2}\right) \mathrm{U}_{p-1}^{2}\left(\frac{Y-2}{2}\right) \prod_{i=1}^{p-1} \mathrm{U}_{p-1}^{2}\left(\frac{X_{2 i}}{2}\right)=} \\
\quad b^{2 p^{2}-2}\left(1+z^{2}\right)^{2}\left(-1-2 z+z^{2}\right)\left(-1+2 z+z^{2}\right) \mathrm{U}_{p-1}^{2}\left(\frac{Y+2}{2}\right) \mathrm{U}_{p-1}^{2}\left(\frac{Y-2}{2}\right)\left(\prod_{i=1}^{p-1} \mathrm{U}_{p-1}\left(\frac{X_{2 i}}{2}\right)\right)^{2} \tag{3a}
\end{gather*}
$$

Working the same way we can rewrite identity 2

$$
A_{4}=b^{4 p^{2}} \prod_{i=1}^{2 p} 2\left(\mathrm{~T}_{2 p}\left(\frac{X_{2 i+1}}{2}\right)+1\right)=b^{4 p^{2}} \prod_{i=1}^{2 p} 4 \mathrm{~T}_{p}^{2}\left(\frac{X_{2 i+1}}{2}\right)
$$

Once again can we take a formal square root.

$$
\begin{equation*}
\sqrt{A_{4}}=b^{2 p^{2}} \prod_{i=1}^{2 p} 2 \mathrm{~T}_{p}\left(\frac{X_{2 i+1}}{2}\right)=b^{2 p^{2}}\left(\prod_{i=0}^{p-1} 2 \mathrm{~T}_{p}\left(\frac{X_{2 i+1}}{2}\right)\right)^{2} \tag{3b}
\end{equation*}
$$

Likewise for A_{2} and A_{3} we find that:

$$
\left.\begin{array}{l}
\sqrt{A_{2}}=b^{2 p^{2}} \prod_{i=1}^{2 p} 2 \mathrm{~T}_{p}\left(\frac{X_{2 i}}{2}\right)=\left[\text { Since }: X_{t}=X_{4 p-t}\right]=b^{2 p^{2}} 2 \mathrm{~T}_{p}\left(\frac{Y-2}{2}\right) 2 \mathrm{~T}_{p}\left(\frac{Y+2}{2}\right) \prod_{i=1}^{p-1}\left(2 \mathrm{~T}_{p}\left(\frac{X_{2 i}}{2}\right)\right)^{2}= \\
\quad=b^{2 p^{2}} 2 \mathrm{~T}_{p}\left(\frac{Y-2}{2}\right) 2 \mathrm{~T}_{p}\left(\frac{Y+2}{2}\right)\left(\prod_{i=1}^{p-1} 2 \mathrm{~T}_{p}\left(\frac{X_{2 i}}{2}\right)^{2}\right.
\end{array}\right)
$$

Note that we have not simplified A_{3} quite as much as A_{2} due to the fact that we have to mix Chebyshev polynomials of the first and second kind.

In fact we find that when $n=m$ then A_{2} and A_{3} are equal and we could have worked with only one of
them above, but we include both cases separately in order to simplify for readers wishing to work on more general cases. Since the expression for A_{2} is somewhat simpler than that for A_{3} we shall use the former in our calculations. Here it is computationally very favourable to
compute the products first and then square the resulting polynomials.

III. AVOIDING NUMERICS: A DETOUR DE GALOIS

In order to calculate the A_{i} we see that we need to evaluate expressions like $\mathrm{U}_{p-1}\left(\frac{X_{2 i}}{2}\right)$ and $2 \mathrm{~T}_{p}\left(\frac{X_{2 i+1}}{2}\right)$ for several values of i. The most direct route here is of course to evaluate the cos-terms of the $X_{2 i+1}$ to very high precision and perform the products with floating point numbers as coefficients, and later round all coefficients to integers. Doing this performs well in comparison to Beale's method and using an Alpha-workstation and Mathematica one of us was able to compute $Z\left(C_{128} \times C_{128}, z\right)$ already a few years ago.

The drawback with this numerical, by which we mean using floating point arithmetic, approach is twofold. First we must make sure that we use high enough precision, linear in the number of vertices in the graph, to get a correct answer and it is not a trivial matter to choose a suitable precision which guarantees that both the products and the final additions behave well. Secondly the computational effort increases with increasing precision, thus making the size of the graph work against us in two ways. With this in mind our next step is to remove the need for numerical calculations and as far as possible stick to integer coefficients throughout the entire process.

A. When to use only integers

The first question we need to answer is at which point of our calculation we actually will have integer coefficients. The place where one would usually resort to numerics is when one wants to compute one of the three large products

$$
\begin{align*}
& P_{1}=\prod_{i=1}^{p-1} \mathrm{U}_{p-1}\left(\frac{X_{2 i}}{2}\right) \tag{4}\\
& P_{2}=\prod_{i=1}^{p-1} 2 \mathrm{~T}_{p}\left(\frac{X_{2 i}}{2}\right) \tag{5}\\
& P_{4}=\prod_{i=0}^{p-1} 2 \mathrm{~T}_{p}\left(\frac{X_{2 i+1}}{2}\right), \tag{6}
\end{align*}
$$

where P_{i} is the product part of our expression for $\sqrt{A_{i}}$. Let us focus on P_{2} for a moment. Every zero of P_{2} is of the form $2 \alpha_{i}+2 \beta_{j}$, where $2 \beta_{j}$ is a zero of $\mathrm{U}_{p-1}(x / 2)$ and $2 \alpha_{i}$ is a zero of $\mathrm{T}_{p}(x / 2)$, see Appendix A Equation A4, and Lemma A.4. In fact the set of zeros of P_{2} consists of all such pairwise sums of zeros of $\mathrm{U}_{p-1}(x / 2)$ and $\mathrm{T}_{p}(x / 2)$.

We now make use of the following theorem (the theorem is not new but we include a proof for completeness).

Recall that a polynomial is said to be monic if its leading coefficient is 1 .

Theorem III.1. Let $P(x)$ and $Q(x)$ be monic polynomials with integer coefficients and define $P \oplus Q$ to be

$$
(P \oplus Q)(x)=\prod_{\alpha \in \mathcal{Z}(P)} \prod_{\beta \in \mathcal{Z}(Q)}(x-\alpha-\beta)
$$

where $\mathcal{Z}(P)$ is the set of zeros of P and $\mathcal{Z}(Q)$ is the set of zeros of Q, here the zeros are not necessarily distinct. Then $P \oplus Q$ is a polynomial with integer coefficients.

Proof. From [8], page 177, we know that there exist matrices M_{P} and M_{Q}, with integer entries, such that P and Q are the characteristic polynomials of M_{P} and M_{Q} respectively. From [9], page 30, we know that the eigenvalues of the matrix $M_{P Q}=M_{P} \oplus M_{Q}$, where \oplus denote the Kronecker sum, is the set of pairwise sums of zeros from P and Q. Thus we know that $P \oplus Q$ is the characteristic polynomial of $M_{P Q}$ and since all entries of $M_{P Q}$ are integers it follows that $P \oplus Q$ has integer coefficients.

Corollary III.2. Let P, Q_{1} and Q_{2} be polynomials with integer coefficients. Then

$$
\left(Q_{1} Q_{2}\right) \oplus P=\left(Q_{1} \oplus P\right)\left(Q_{2} \oplus P\right),
$$

where both $Q_{1} \oplus P$ and $Q_{2} \oplus P$ are polynomials with integer coefficients.

From Corollary A. 3 of Appendix A we know that both $\mathrm{U}_{p-1}(x / 2)$ and $2 \mathrm{~T}_{p}(x / 2)$ have integer coefficients and so the theorem implies that P_{2} has integer coefficients too. Identical arguments show that P_{1} and P_{4} have integer coefficients as well.

This result is very useful in our context since it means that if we use numerics we can round our coefficients to integers once the P_{i} :s have been computed. Since the final polynomial is obtained after squaring the P_{i} :s we have effectively halved the precision needed in our numerics. This also means that if we can compute the P_{i} :s without numerics we can avoid numerics at all stages of our computation.

B. Galois theory...

Before we proceed let us recall some of the basic facts of Galois theory (for a nice introduction to this topic see [10]). Let K denote a field [20], such as \mathbb{Q} or \mathbb{R} and let $K[x]$ be the ring of polynomials in the indeterminate x. A polynomial is said to be monic if its leading coefficient is 1 . A polynomial in $K[x]$ is said to be irreducible if it can not be written as a product of two non-constant polynomials from $K[x]$. Thus every polynomial in $K[x]$ can be written as a product of irreducible polynomials from $K[x]$.

Given a number α such that $p(\alpha)=0$ for some $p \in$ $K[x]$ we can find a unique irreducible monic polynomial $q \in K[x]$ of minimal degree such that $q(\alpha)=0$; we call this polynomial the minimum polynomial of α over K. The minimum polynomial of α will divide any polynomial of which α is a zero.

Given a polynomial $p \in K[x]$ we can form a new field by adding the zeros of p to K. The smallest field formed in this way is called the splitting field of p and in this field p can be factored into linear factors. Given a number α such that $p(\alpha)=0$ for some $p \in K[x]$ we denote by $K(\alpha)$ the splitting field of the minimum polynomial of α. Given a polynomial p there is always a zero α of p such that the first $\operatorname{deg}(p)$ powers of α form a basis for $K(\alpha)$ as a vector space over K.

We let $G(\alpha)$ denote the set of automorphisms of $K(\alpha)$ which fixes the elements of K. From Galois theory we know that $G(\alpha)$ acts as a permutation of the zeros of the minimum polynomial of α and it acts transitively on the set of zeros.
C. \quad.. when it is not needed, $n=2^{q}, \ldots$

In each of our three products we want to evaluate a polynomial in $X_{2 i}$ or $X_{2 i+1}$. We recall that $X_{t}=Y-2 \alpha_{t}$ and for later convenience we denote $\gamma_{t}=2 \alpha_{t}$.

Since our γ_{t} represent $2 \cos \left(\frac{t \pi}{n}\right)$ we have the following multiplication rule for γ_{t} :

$$
\gamma_{t} \gamma_{u}=\gamma_{t+u}+\gamma_{t-u}
$$

which for squaring means that

$$
\begin{equation*}
\gamma_{t}^{2}=\gamma_{t} \gamma_{t}=\gamma_{2 t}+\gamma_{0}=\gamma_{2 t}+2 \tag{7}
\end{equation*}
$$

Furthermore we find that if we multiply γ_{t} and γ_{n-t} we get

$$
\begin{equation*}
\gamma_{n-t} \gamma_{t}=\gamma_{(n-t)+t}+\gamma_{(n-t)-t}=\gamma_{n}+\gamma_{(n-2 t)}=-2+\gamma_{(n-2 t)} \tag{8}
\end{equation*}
$$

Here we should keep in mind that $\gamma_{p}=0$ and use this to eliminate terms where γ_{p} appears. In both 7 and 8 we find that we now have indices of γ which correspond to a term of the form

$$
\cos \left(\frac{t \pi}{n / 2}\right)
$$

meaning that we have halved the denominator.
Let us now look at the product P_{1} and assume that n is of the form 2^{q}. Rather than computing P_{1} directly we compute a sequence of auxiliary polynomials, using the multiplication rules to simplify the products.

$$
\begin{gathered}
p_{1, n-2 k}= \begin{cases}\mathrm{U}_{p-1}\left(\frac{X_{2 k}}{2}\right) & 1 \leq k \leq p-1 \\
1 & \text { otherwise }\end{cases} \\
p_{t, n-2 k}= \begin{cases}p_{t-1, k} p_{t-1, n-k} & 0 \leq k \leq p-1 \\
p_{t-1, p} & k=p \\
1 & \text { otherwise }\end{cases}
\end{gathered}
$$

From our observations above it follows that each $p_{t, k}$ will be a polynomial in Y and terms of the form $\cos \left(\frac{j \pi / 2}{n / 2^{t-1}}\right)$, i.e when we increase t by 1 we halve the denominators in the cos-terms. Thus our final polynomial $p_{q+1, n}$ will have only cos-terms of the form $\cos (j \pi / 2)$, that is, it will have only integer coefficients. Now $p_{q+1, n}$ is our entire product and so is actually P_{1}. This means that the product for P_{1} will have no remaining cos-terms and there is no need for numerical evaluations. That this result will hold for any order of multiplication follows from the commutativity of polynomial multiplication. The same argument goes through for P_{2} and P_{4}.

D. ... and when it comes to use

Let us now look at n of the form $n=2 p$, where p is not a power of 2 . In this case we find that each of our three products can be rewritten as

$$
\begin{align*}
& P_{1}=\mathrm{U}_{p-1}(Y / 2) \oplus \mathrm{U}_{p-1}(Y / 2) \tag{9}\\
& P_{2}=\left(2 \mathrm{~T}_{p}(Y / 2)\right) \oplus \mathrm{U}_{p-1}(Y / 2) \tag{10}\\
& P_{4}=\left(2 \mathrm{~T}_{p}(Y / 2)\right) \oplus\left(2 \mathrm{~T}_{p}(Y / 2)\right) \tag{11}
\end{align*}
$$

or in the terminology of Section A 3 of Appendix A

$$
\begin{align*}
& P_{1}=S_{p-1}(Y) \oplus S_{p-1}(Y) \tag{12}\\
& P_{2}=C_{p}(Y) \oplus S_{p-1}(Y) \tag{13}\\
& P_{4}=C_{p}(Y) \oplus C_{p}(Y) \tag{14}
\end{align*}
$$

We now have several choices regarding how to compute our P_{i} :s.

A first way to compute our products is to use the observation of Corollary III. 2 in combination with our knowledge of the irreducible factors of C_{p} and S_{p} to define several intermediate polynomials

$$
\begin{align*}
& P_{1, h}=S_{p-1}(Y) \oplus G_{h}(Y)=\prod S_{p-1}\left(X_{2 i}\right) \tag{15}\\
& P_{2, h}=C_{p}(Y) \oplus G_{h}(Y)=\prod C_{p}\left(X_{2 i}\right) \tag{16}\\
& P_{4, h}=C_{p}(Y) \oplus F_{h}(Y)=\prod S_{p-2}\left(X_{2 i-1}\right) \tag{17}
\end{align*}
$$

where the products range over the set of i :s corresponding to h, see the Appendix. We now have that

$$
P_{1}=\prod_{h} P_{1, h} \quad P_{2}=\prod_{h} P_{2, h} \quad P_{4}=\prod_{h} P_{4, h}
$$

The corollary implies that each $P_{i, h}$ will be a polynomial with integer coefficients and so we can return to integer coefficients after each $P_{i, h}$ has been computed. We also note that all the computations performed when computing $P_{1, h}$, and similarly for the other products, can be performed in the splitting field of $G_{h}(x)$. Here we can use the multiplication rule defined earlier to compute products of our γ_{t} as formal variables. We recall that the splitting field $K(\alpha)$ of G_{h} is generated by some root α of G_{h}, this
means that once we have expanded the product for $P_{1, h}$ we will have a polynomial in Y and α with integer coefficients. Since the Galois group $G(\alpha)$ acts transitively on the powers of α and the value of $P_{1, h}$ is invariant under this action we find that the coefficients of the powers of α in the coefficient of Y^{k} must all be equal and our polynomial thus has terms of the form

$$
\left(a+b\left(\sum_{j} b_{j} \alpha^{j}\right)\right) Y^{k}
$$

where the b_{j} are either 0 or 1 . We can now evaluate each sum $\sum_{j} b_{j} \alpha^{j}$ to an integer and we will have our desired polynomial, computed without need for numerics.

As a second alternative we can make full use of the factorisations of C_{p} and S_{p-1} to define products

$$
\begin{align*}
P_{1, h, k} & =G_{h} \oplus G_{k} \tag{18}\\
P_{2, h, k} & =F_{h} \oplus G_{k} \tag{19}\\
P_{4, h, k} & =F_{h} \oplus F_{k} \tag{20}
\end{align*}
$$

with

$$
P_{1}=\prod_{h, k} P_{1, h, k} \quad P_{2}=\prod_{h, k} P_{2, h, k} \quad P_{4}=\prod_{h, k} P_{4, h, k}
$$

As before each of these polynomials will have integer coefficients and we can compute each polynomial using either the multiplication rule as above or, for low degree polynomials, make use of the methods described in the proof of Theorem III.1. Breaking the polynomials into small pieces like this will save us a lot in memory usage and we will be able to return to integer coefficients at the earliest possible stage. If we look at the products for P_{1} and P_{4} we can note another possible optimisation. These products can be rewritten as

$$
\begin{align*}
& P_{1}=\prod_{h, k} P_{1, h, k}=\left(\prod_{h<k} P_{1, h, k}\right)^{2} 2^{p-2} S_{p-2}(Y / 2) \tag{21}\\
& P_{4}=\prod_{h, k} P_{4, h, k}=\left(\prod_{h<k} P_{1, h, k}\right)^{2} 2^{p} C_{p}(Y / 2) \tag{22}
\end{align*}
$$

We can thus compute only about half as many products and then square the resulting polynomials instead. In case p is an odd number we can take this even further by noticing that now the factors of $\mathrm{U}_{p-1}(x / 2)$ come in pairs, so that if $q(x)$ is a factor then $q(-x)$ is also a factor. Thus we can compute half of the products just by evaluating the other half in $-x$.

IV. SUMMING IT UP, BOTH STRAIGHT AND ROUND

Our final step is to take the proper linear combination of the $\sqrt{A_{i}}$:s in order to get Z_{0}. Here we are faced with two choices. There is one choice of signs which gives us
the generating function for the set of Euler subgraphs [21] of size k of $C_{m} \times C_{n}$, this is the classical approach following Kasteleyn and Kaufman, however there is also another choice of signs which gives us the generating function for the number of states of energy k on $C_{m} \times C_{n}$. For a fixed energy k these numbers will be equal, apart from a factor 2 , for a large enough grid, $k<\min \{m, n\}$, but for a finite grid they will differ for most values of k.

The first thing to consider here is the fact that we have to take a formal square root $\sqrt{A_{i}}$ in order to get the polynomials we wish to add. The square root of a polynomial is unique up to the choice of sign, just as it is for numbers, and we need some way to see which sign is right in our context. This problem is solved as soon as we realise that $\sqrt{A_{i}}$ is in fact a generating function in itself, counting weighted Euler subgraphs of our grid [7]. Using this fact we see that the first $k=\min \{m, n\}-1$ coefficients should be positive for all four $\sqrt{A_{i}}: \mathrm{S}$ and so our earlier choice of sign is correct.

In order not to make our presentation too long we will now make use of some facts from chapters 4 and 5 of [7]. From [7] we know that if we take the linear combination

$$
\frac{1}{2}\left(-\sqrt{A_{1}}+\sqrt{A_{2}}+\sqrt{A_{3}}+\sqrt{A_{4}}\right)
$$

we get the generating function for the number of Euler subgraphs of $C_{m} \times C_{n}$ and that these are typically considered equal in number to Ising states of a corresponding energy by virtue of the purported self-duality of the square grid. What is typically not mentioned is that this duality work only for selfdual planar graphs like $P_{m} \times P_{n}$, the product of two paths, and in this particular case only for the infinite grid. (Note that a finite selfdual graph on N vertices has $2 N-2$ edges, which is not the case for $P_{m} \times P_{n}$.) To see this let us consider a cycle in $C_{m} \times C_{n}$ which "goes around" the torus on which the graph is naturally embedded, a non-contractible cycle in the language of topology. In the dual graph this cycle will correspond to a set of edges which does not form an edge-cut and thus not to an Ising state on the dual graph. For cycles shorter than $k=\min \{m, n\}$ this can not occur and so, by duality, the first and last $k-1$ coefficients will be equal.

However, the problem just described can be remedied in a quite simple way. From basic topological graph theory [11] we know that an Euler subgraph of our grid will correspond to an Ising state on the dual graph if it either does not contain a non-contractible cycle, being of kind $(0,0)$ in the terminology of [7] page 66 , or contains an even number of such cycles in each of the two possible directions, being of kind (even,even). Making use of this observation and the sign table on page 66 of [7] we deduce that

$$
\frac{1}{2}\left(\sqrt{A_{1}}+\sqrt{A_{2}}+\sqrt{A_{3}}+\sqrt{A_{4}}\right)
$$

will give us the generating function for the set of Euler subgraphs of the right kind and so, by duality, the generating function for Ising states with a given energy.

V. IMPLEMENTATION, MORE OF THE
 PRACTICAL DETAILS

Here we comment on how to perform some of the calculations described so far in practice and how to verify that we in the end have the correct answer.

A. Making the initial polynomials

To calculate the product 3 a to 3 d we first calculate the Chebyshev polynomials $\mathrm{U}_{n-1}(x / 2)$ and $2 \mathrm{~T}_{n}(x / 2)$, then evaluate them in $Y-\gamma_{t}$ where $\gamma_{t}=2 \alpha_{t}$ and Y are considered formal variables. That is, we do not choose a value for t at this stage. We end up with a polynomial with integer coefficients and in two variables Y and γ_{t}. Since γ_{t} represents $2 \cos \frac{t \pi}{n}$ we have the following multiplication rule, as we already noted in III C:

$$
\gamma_{t} \gamma_{u}=\gamma_{t+u}+\gamma_{t-u}
$$

and for squaring this simplifies to

$$
\gamma_{t}^{2}=\gamma_{t} \gamma_{t}=\gamma_{2 t}+\gamma_{0}=\gamma_{2 t}+2
$$

Using this rule we can transform the polynomial to a polynomial linear in $\gamma_{t_{1}}, \gamma_{t_{2}}, \ldots$

By using the symmetries of the cos-function we can further reduce the index of γ_{t} to the interval $0 \leq t \leq n / 2$. This reduces the number of γ-variables and the memory consumption of our calculation. This means that we are now working with signed roots rather than the original roots.

In order to make sure that all the $\gamma_{t_{j}}$ represent nonrational zeros, as required for our conclusions based on the Galois group to apply, we also make use of the rules,

$$
\gamma_{0}=2, \quad \gamma_{n / 2}=0, \quad \gamma_{n / 3}=1
$$

These are the only indices which correspond to rational values of the cos-function, see e.g. [12].

Should we like to use one of the more optimised versions of the algorithm, and work with G_{h} and F_{h} instead, we can obtain the needed polynomials e.g. by factoring the respective Chebyshev polynomials in Mathematica.

B. Multiplying the polynomials

Next we multiply all the polynomials and use the above rules to multiply γ_{t}. In this way we will end up with a polynomial in Y and our $\gamma_{t_{j}}$:s with terms of the form

$$
\left(a+b\left(\sum_{j} b_{j} \gamma_{t_{j}}\right)\right) Y^{k}
$$

We now evaluate the appearing sums of the form $\sum_{j} b_{j} \gamma_{t_{j}}$, either using known formulae for trigonometric

$$
\sum_{k=0}^{n} \cos (k x)=\frac{\cos \left(\frac{n x}{2}\right) \sin \left(\frac{(n+1) x}{2}\right)}{\sin \frac{x}{2}}
$$

or "cheating" by evaluating them numerically, rounding to the actual integer, and substituting the values back into the polynomial. To use numerics at this stage is actually safe since the sums have few terms, all of similar and small size.

The specific order of multiplication described earlier for the case when n is a power of 2 has some practical advantages as well. Since at each stage we halve the denominator we also reduce the number of cos-terms in our polynomials. This means that memory usage is reduced and since there are fewer terms we also save some time in the multiplication of coefficients.

When n is not a power of 2 it is noteworthy that since the number of irreducible factors of the Chebyshev polynomials depend on the divisors of the side length of our grid we can end up with large differences in the amount of work needed to compute the partition function for grids of nearly equal sides. For example we expect the 510grid to be significantly easier to handle than the 512-grid. Thus some care should be taken in the choice of grid side, when one is free to do so.

C. Substituting back to z

To get back to a polynomial in z we have to substitute back

$$
Y=\frac{a^{2}}{b}=\frac{\left(1+z^{2}\right)^{2}}{z\left(1-z^{2}\right)}
$$

This is a rational function in z and we would like to avoid working with rational functions and work only with polynomials. This is accomplished by using the Horner form of the polynomial [13]. Since we know that the answer is a polynomial and we multiply by a large enough power of $b=z\left(1-z^{2}\right)$ we have the following scenario

$$
\begin{aligned}
& b^{2 p^{2}} Y\left(c_{0}+Y\left(c_{1}+\ldots Y\left(c_{2 p^{2}-1}+c_{2 p^{2}}(Y)\right)\right)\right)= \\
& \quad=b^{2 p^{2}} c_{0}\left(\frac{a^{2}}{b}+c_{1}\left(\frac{a^{2}}{b}+\ldots\left(c_{2 p^{2}-1}+c_{2 p^{2}}\left(\frac{a^{2}}{b}\right)\right)\right)\right)= \\
& \quad=c_{0}\left(a^{2} b^{p^{2}-1}+c_{1}\left(a^{2} b^{2 p^{2}-2}+\ldots\left(a^{2} b+c_{2 p^{2}}\left(a^{2}\right)\right)\right)\right)
\end{aligned}
$$

and by using the Horner rule for multiplication of polynomials we end up only using polynomial arithmetic.

D. Squaring

We now square our polynomials. After that we multiply A_{1} and A_{2} with appropriate factors according to 3 a and 3c.

When n is large, say 200 or more, some care should be taken here. First this stage is very suitable for parallellisation, secondly since the coefficients of the polynomials
now become very large one should use an FFT-based multiplication algorithm when multiplying the coefficients, such as the one implemented in [14].

When n is very large, say 500 or more with present day machines, it becomes hard to handle the full polynomial. The Ising polynomial for $n=512$ would need around 8 gigabytes of disk space. However since one is usually interested in some specific range of coefficients rather than the whole polynomial one can settle for computing only the needed range in the squaring process.

E. The final linear combination

Finally we add our polynomials with either of the choices of signs and we are now done.

F. Checksums, did we get it right?

In order to be reasonably certain that our calculated polynomial is correct we will also make some checksums. Here we focus on Z as the generating function for the number of Ising states of a given energy, with exponents running between $-2 m n$ and $2 m n$.

The first test to make is of course that the coefficients sum to $2^{m n}$, and more generally we make use of the moments μ_{k} of the density of states to verify our calculations. The generating function for the number of states with a given energy is $Z(G, z)$ and thus the moment generating function is $Z(G, \exp (K))=\mathcal{Z}(G, K)$.

Since the first $k=\min \{m, n\}-1$ Taylor coefficients of the free energy $\mathcal{F}(K)$ for our finite $m \times n$ grid coincide with the first k Taylor coefficients of $\mathcal{F}_{\infty}(K)$ for the infinite grid (see e.g. [15]) and $\mathcal{F}(K)$ is the exponential generating function for the moments, see [16], we have that the first k derivatives of $\exp \left(m n \mathcal{F}_{\infty}(K)\right)$ are equal to the first k moments of our $\mathcal{F}(x)$.

In fact we have

$$
\mu_{j}=\sum_{i=-2 m n}^{2 m n} a_{i} i^{j}=\left.\frac{\mathrm{d}^{j} \mathcal{Z}(K)}{\mathrm{d} K^{j}}\right|_{K=0}
$$

for $j \leq k$. We can now calculate these moments both for the Onsager solution for the infinite grid and for our polynomial and if the first k moments agree we have a very strong indicator that no computational error has occurred.

In practise it seems easier to calculate $\left.\frac{\mathrm{d}^{j} \mathcal{Z}(K)}{\mathrm{d} K^{j}}\right|_{K=0}$ by using the Taylor expansion of the internal energy $\mathcal{U}(K)$ and evaluate

$$
\frac{\mathrm{d}^{j}}{\mathrm{~d} K^{j}} \exp \left(m n \int \mathcal{U}(K) \mathrm{d} K\right)
$$

in the ring of formal power series.
A final test can be obtained by observing that the first k Taylor coefficients of $\frac{1}{m n} \log A_{1}, \ldots, \frac{1}{m n} \log A_{4}$ are all
equal to those of $\mathcal{F}_{\infty}(x)$. This is the case since each of the three polynomials count the small Euler subgraphs with the same weight.

G. What have we done?

We have implemented our method both for $n=2^{k}$ as well as general even n using formal variables for γ_{t} but not utilising full factorisation of the Chebyshev polynomials.

We began by evaluating Chebyshev polynomials in the formal variables in Mathematica. Next the P_{i} are computed, substitution is made, squaring is done and finally multiplication with the appropriate prefactors, all using four separate F90-programs.

In this way we have computed the Ising partition function for the following n : all multiples of 4 up to 80 , all multiples of 16 from 80 to 128 , all multiples of 32 from 128 up to 160 and finally for $n=256$ and $n=320$.

The smaller cases were handled on ordinary workstations. For n from 160 and upwards we used a linuxcluster for the squaring stage. Computation of the P_{i} for the 256 -grid was done on an SGI Origin3800, using the large integer libraries of [14]. The squaring stage for the 256 -grid took the equivalent of 30 CPU days on an Athlon MP2000+ (1.667Ghz).

For $=160$ and $n=320$ we used the full Galois method. The factor polynomials were computed using Mathematica on a Macintosh, the larger products giving the $P_{i, k}$ and the substitutions were done a Linux workstation, and the final multiplications and squarings were done on a Linux cluster. For $n=320$ the final multiplications and squarings took a total of 165 CPU days. The polynomial itself takes up 1.86 Gb of disk space.

The polynomials can be downloaded via the papers homepage at: http://abel.math.umu.se/ Combinatorics/ising.html

Here we can also mention that in the course of computing these polynomials our checksums as described above have identified one faulty compiler, a malfunctioning hard disk as well as a bug in a well used standard Fortran package. A testimony to both how sensitive to software and hardware errors an exact computation like this is, as well as to the accuracy of our check sums.

VI. DEFINITION OF QUANTITIES

Having computed the partition function for a number of grids our aim is now to do an analysis of the data. The quantities divide into two groups; those expressed in terms of the coupling K, and those expressed in terms of the energy ν. To the first category belongs the free energy $\mathcal{F}(K)$ and its derivatives, the second category contains the entropy $S(\nu)$ and its derivatives. Since the free energy depends on the entire sequence of coefficients a_{i} whereas the entropy depends on only one a_{i}, we will see
some different behaviour. Note that asymptotically we may translate between K and a corresponding ν through the relation $\nu=\mathcal{U}(K) / 2$. For example, we may write $S\left(\nu_{c}\right)=\mathcal{F}\left(K_{c}\right)-K_{c} \mathcal{U}\left(K_{c}\right)$ to obtain the asymptotic value of the entropy at the critical point, but this doesn't throw any light on how this value scales with the size of the grid. Quantities depending on coupling K are written in a calligraphic style, e.g. $\mathcal{F}(K)$, while those depending on energy, e.g. $S(\nu)$ are written in a normal style.

Whenerver logarithms are used they are natural logarithms in base e.

A. Entropy and coupling

We define the entropy at relative energy $\nu=i / 2 m n$ as

$$
\begin{equation*}
S(\nu)=\frac{\log a_{i}}{m n} \tag{23}
\end{equation*}
$$

Should we desire the entropy at some energy where a_{i} is not defined then we will happily circumvent this problem with linear interpolation. The coupling K is defined as

$$
\begin{equation*}
K=\frac{-1}{2} S^{\prime}(\nu) \tag{24}
\end{equation*}
$$

This is in line with the maximum term method (see [17] volume 1 chapter 2.6) which could give us an alternative definition. Consider the terms in the sum $Z=\sum_{i} a_{i} z^{i}$. Given a number z we assume that there is a maximum term $a_{i} z^{i}$ such that

$$
a_{i-k} z^{i-k} \leq a_{i} z^{i} \geq a_{i+k} z^{i+k}
$$

where k is the difference in energy between two consecutive levels of energy. From this inequality we obtain

$$
\frac{a_{i-k}}{a_{i}} \leq z^{k} \leq \frac{a_{i}}{a_{i+k}}
$$

It follows also, as an aside, that $a_{i-k} a_{i+k} \leq a_{i}^{2}$, i.e. the sequence is log-concave at energy i. Assuming now that $z=e^{K}$ we have that K is a number in the interval

$$
\frac{1}{k} \log \frac{a_{i-k}}{a_{i}} \leq K \leq \frac{1}{k} \log \frac{a_{i}}{a_{i+k}}
$$

where we let the lower bound be denoted by \underline{K} and the upper bound by \bar{K}. Consider now the derivative S^{\prime} which we define to be

$$
\begin{gathered}
S^{\prime}\left(\frac{i+k / 2}{2 m n}\right)=\frac{S\left(\frac{i+k}{2 m n}\right)-S\left(\frac{i}{2 m n}\right)}{k / 2 m n}= \\
\frac{2 m n}{m n k}\left(\log a_{i+k}-\log a_{i}\right)=\frac{-2}{k} \log \frac{a_{i}}{a_{i+k}}=-2 \bar{K}
\end{gathered}
$$

Note that we will associate the derivative to the middle of $i / 2 m n$ and $(i+k) / 2 m n$ since we are dealing with data at discrete points, though this will make little difference for large grids.

As the grid grows we expect that $\bar{K} \rightarrow \underline{K}$ making K a well-defined number in the limit. Alternatively we may, as we have done, associate K with the upper bound \bar{K}. This has the benefit of making the coupling well-defined for all finite systems rather than a number in an interval that exists (possibly) only in the limit.

B. Physical quantities

For the physical quantities we evaluate the partition function Z in e^{K} and write $\mathcal{Z}(K)$ for simplicity. We assume the Boltzmann distribution on the states, that is

$$
\operatorname{Pr}(\sigma)=\frac{e^{K E(\sigma)}}{\mathcal{Z}} \quad \text { and } \quad \mathcal{Z}=\sum_{\sigma} e^{K E(\sigma)}
$$

so that the sum of the probabilities becomes 1 . The derivative then becomes

$$
\frac{\partial \log \mathcal{Z}(K)}{\partial K}=\frac{\mathcal{Z}^{\prime}}{\mathcal{Z}}=\frac{\sum_{i} a_{i} i e^{i K}}{\mathcal{Z}}=\sum_{i} i \operatorname{Pr}(i)=\langle E\rangle
$$

where $\langle\cdot\rangle$ denotes the expected value. Analogously for the second derivative we get

$$
\frac{\partial^{2} \log \mathcal{Z}(K)}{\partial K^{2}}=\frac{\mathcal{Z}^{\prime \prime}}{\mathcal{Z}}-\left(\frac{\mathcal{Z}^{\prime}}{\mathcal{Z}}\right)^{2}=\left\langle E^{2}\right\rangle-\langle E\rangle^{2}=\operatorname{var}(E)
$$

that is, the variance of E. We define the following physical quantities

$$
\begin{aligned}
\text { free energy } & \mathcal{F}(K)=\frac{1}{m n} \log \mathcal{Z}(K) \\
\text { internal energy } & \mathcal{U}(K)=\frac{\partial \mathcal{F}}{\partial K} \\
\text { specific heat } & \mathcal{C}(K)=K^{2} \frac{\partial \mathcal{U}}{\partial K} \\
\text { entropy } & \mathcal{S}(K)=\mathcal{F}-K \mathcal{U}
\end{aligned}
$$

We try the reader's patience here somewhat by using a non-standard, yet clean, simple and dimensionless, definition of the free energy and entropy. That they are internally consistent follows, again, from the maximum-term method. For a large system we simply expect a given coupling K to correspond to a certain energy E and a term that dominates the partition function, thus having $\log \mathcal{Z}(K) \approx \log a_{E} e^{K E}$. This gives

$$
\mathcal{F}(K) \approx \frac{1}{m n} \log a_{E} e^{K E}=\frac{\log a_{E}}{m n}+K \frac{E}{m n}=S+K \mathcal{U}
$$

so that $S(E / 2 m n) \approx \mathcal{S}(K)=\mathcal{F}(K)-K \mathcal{U}(K)$.

C. The Onsager solutions

For completeness we shall state the Onsager solutions which we will view as the limit functions as $m, n \rightarrow \infty$.

Let \mathcal{K}_{1} be the complete elliptic integral of the first kind defined by

$$
\mathcal{K}_{1}(x)=\int_{0}^{\pi / 2}(1-x \sin \theta)^{-1 / 2} \mathrm{~d} \theta
$$

Let \mathcal{K}_{2} be the complete elliptic integral of the second kind defined by

$$
\mathcal{K}_{2}(x)=\int_{0}^{\pi / 2}(1-x \sin \theta)^{1 / 2} \mathrm{~d} \theta
$$

The free energy for the infinite grid, depicted in Figure 1 , is

$$
\begin{aligned}
& \mathcal{F}(K)=\log 2+\frac{1}{2 \pi^{2}} \times \\
& \int_{0}^{\pi} \int_{0}^{\pi} \log \left[\cosh ^{2}(2 K)-\sinh (2 K)(\cos u+\cos v)\right] \mathrm{d} u \mathrm{~d} v
\end{aligned}
$$

Define z as

$$
z=\frac{2 \sinh (2 K)}{\cosh ^{2}(2 K)}
$$

Then the internal energy for the infinite grid, depicted in Figure 1, is

$$
\mathcal{U}(K)=\operatorname{coth}(2 K)\left(1+\frac{2}{\pi} \mathcal{K}_{1}\left(z^{2}\right)\left(2 \tanh ^{2}(2 K)-1\right)\right)
$$

and the specific heat for the infinite grid, depicted in Figure 2 is

$$
\begin{aligned}
& \mathcal{C}(K)=\frac{2}{\pi} K^{2} \operatorname{coth}^{2}(2 K) \times \\
& \quad\left[2 \mathcal{K}_{1}\left(z^{2}\right)-2 \mathcal{K}_{2}\left(z^{2}\right)-2\left(1-\tanh ^{2}(2 K)\right)\right. \\
& \left.\quad\left(\frac{\pi}{2}+\mathcal{K}_{1}\left(z^{2}\right)\left(2 \tanh ^{2}(2 K)-1\right)\right)\right]
\end{aligned}
$$

We shall need the following constants, where K_{c} is the critical coupling and $G \approx 0.915966$ is Catalan's constant:

$$
\begin{aligned}
K_{c} & =\frac{1}{2} \log (1+\sqrt{2}) \approx 0.440687 \\
F_{c} & =\mathcal{F}\left(K_{c}\right)=\frac{\log 2}{2}+\frac{2 G}{\pi} \approx 0.929695 \\
U_{c} & =\mathcal{U}\left(K_{c}\right)=\sqrt{2} \approx 1.414214 \\
S_{c} & =\mathcal{S}\left(K_{c}\right)=\frac{\log 2}{2}+\frac{2 G}{\pi}-\sqrt{2} K_{c} \approx 0.306470
\end{aligned}
$$

VII. THE FREE ENERGY AND ITS DERIVATIVES

Henceforth we will only consider the case $m=n$. The values at K_{c} of the free energy etc. is shown in Table I along with the maximum value of \mathcal{C} and the location of

FIG. 1: (Color online) Free energy $\mathcal{F}(K)$ (top) and internal energy $\mathcal{U}(K)$ (bottom) vs K / K_{c} for the infinite grid.
the maximum. We denote by K_{n}^{*} the location of the maximum of \mathcal{C}_{n}.

In Figure 3 we show how \mathcal{F} and \mathcal{U} differ from their respective critical values as n increases. It was shown by Ferdinand and Fisher [18] how these differences should behave:

$$
\begin{aligned}
\mathcal{F}_{n}\left(K_{c}\right)-F_{c} & \sim \frac{1}{n^{2}} \log \left(2^{1 / 4}+2^{-1 / 2}\right) \approx \frac{0.639912}{n^{2}} \\
\mathcal{U}_{n}\left(K_{c}\right)-U_{c} & \sim \frac{2}{n} \frac{\theta_{2} \theta_{3} \theta_{4}}{\theta_{2}+\theta_{3}+\theta_{4}} \approx \frac{0.622439}{n} \\
\mathcal{S}_{n}\left(K_{c}\right)-S_{c} & \approx-\frac{0.274301}{n}+\frac{0.639912}{n^{2}}
\end{aligned}
$$

where the last formula follows from our definition of entropy $\mathcal{S}=\mathcal{F}-K \mathcal{U}$. For the constants $\theta_{2}, \theta_{3}, \theta_{4}$ we have used the elliptic theta functions $\theta_{2}=\theta_{2}\left(0, e^{-\pi}\right) \approx$ $0.913579, \quad \theta_{3}=\theta_{3}\left(0, e^{-\pi}\right) \approx 1.08643$ and $\theta_{4}=$ $\theta_{4}\left(0, e^{-\pi}\right) \approx 0.913579$.

If we fit a straight line through the origin and the last point $(n=320)$ for the free energy it will have formula $0.639913 x$, where $x=1 / n^{2}$, which matches well indeed with the value in [18]. Analogously, for the internal energy we get $0.622437 x$, where $x=1 / n$, again only a slight deviation in the sixth decimal.

FIG. 2: (Color online) Entropy $\mathcal{S}(K)$ (top) and specific heat $\mathcal{C}_{n}(K)$ (bottom) for $n=16,32,64,96,128,160,256,320$ and the infinite grid vs K / K_{c}.

A. Specific heat

The specific heat should go to infinity with logarithmic speed if we stay close to K_{c}. It was shown by Onsager [3] that

$$
\begin{aligned}
\max \mathcal{C}_{n, \infty} & =A \log n+B_{\infty}+o(1) \\
A & =\frac{2}{\pi}\left(\log \cot \frac{\pi}{8}\right)^{2} \approx 0.494539 \\
B_{\infty} & =A\left(\log \frac{2^{5 / 2}}{\pi}+\gamma_{E}-\frac{\pi}{4}\right) \approx 0.187903
\end{aligned}
$$

where $\gamma_{E} \approx 0.5772$ is Euler's gamma. However, it should be noted that the B-constant depends on the shape of the grid. Onsager's grid has shape $n \times \infty$. Also, it will depend on whether we are looking at the critical point or at the maximum. For an $n \times n$-grid we have, and we

n	$\mathcal{F}_{n}\left(K_{c}\right)$	$\mathcal{U}_{n}\left(K_{c}\right)$	$\mathcal{S}_{n}\left(K_{c}\right)$	$\mathcal{C}_{n}\left(K_{c}\right)$	$\max \mathcal{C}_{n}$	K_{n}^{*}
4	0.970120	1.56562	0.280170	0.78327	0.81646	0.410012
8	0.939715	1.49159	0.282392	1.14556	1.19184	0.423374
12	0.934143	1.46596	0.288114	1.35295	1.40391	0.428687
16	0.932196	1.45306	0.291850	1.49870	1.55220	0.431498
20	0.931296	1.44531	0.294367	1.61116	1.66628	0.433239
24	0.930807	1.44013	0.296159	1.70273	1.75898	0.434424
28	0.930512	1.43643	0.297494	1.77997	1.83706	0.435282
32	0.930320	1.43366	0.298526	1.84677	1.90451	0.435933
36	0.930189	1.43150	0.299346	1.90561	1.96386	0.436444
40	0.930095	1.42977	0.300014	1.95818	2.01686	0.436855
44	0.930026	1.42836	0.300568	2.00570	2.06473	0.437194
48	0.929973	1.42718	0.301034	2.04906	2.10839	0.437477
52	0.929932	1.42618	0.301432	2.08891	2.14850	0.437718
56	0.929899	1.42533	0.301777	2.12579	2.18561	0.437925
60	0.929873	1.42459	0.302077	2.16012	2.22013	0.438106
64	0.929852	1.42394	0.302341	2.19221	2.25239	0.438264
68	0.929834	1.42337	0.302575	2.22235	2.28269	0.438403
72	0.929819	1.42286	0.302784	2.25076	2.31123	0.438528
76	0.929806	1.42240	0.302972	2.27762	2.33822	0.438639
80	0.929795	1.42199	0.303142	2.30310	2.36381	0.438740
96	0.929765	1.42070	0.303682	2.39362	2.45470	0.439060
112	0.929746	1.41977	0.304072	2.47010	2.53145	0.439289
128	0.929734	1.41908	0.304366	2.53633	2.59789	0.439462
160	0.929720	1.41810	0.304781	2.64695	2.70880	0.439705
256	0.929705	1.41664	0.305408	2.87979	2.94210	0.440071
320	0.929701	1.41616	0.305619	2.99027	3.05275	0.440193

TABLE I: Values at K_{c} and extremal data on \mathcal{C}.
quote this from [18],

$$
\begin{aligned}
\max \mathcal{C}_{n} & =A \log n+B_{\max }+o(1) \\
\mathcal{C}_{n}\left(K_{c}\right) & =A \log n+B_{c}+o(1) \\
K_{n}^{*}-K_{c} & \sim \frac{-0.36029 K_{c}}{n}=\frac{-0.15878}{n}
\end{aligned}
$$

where $B_{\max } \approx 0.201359$ and

$$
\begin{aligned}
B_{c}= & B_{\infty}-\frac{\left(\log \cot \frac{\pi}{8}\right)^{2}}{\theta_{2}+\theta_{3}+\theta_{4}} \times \\
& \times\left(\frac{4}{\pi} \sum_{i=2}^{4} \theta_{i} \log \theta_{i}+\frac{\theta_{2}^{2} \theta_{3}^{2} \theta_{4}^{4}}{\theta_{2}+\theta_{3}+\theta_{4}}\right) \approx 0.138150
\end{aligned}
$$

The authors of [18] do not give exact expressions for $B_{\max }$ or the constant -0.36029 above.

A curious fact which we would like to mention, see [3] and [18], is that for an oblong grid such as an $n \times \infty$-grid or indeed, perhaps surprisingly, an $n \times 3.1393 n$-grid the difference between K^{*} and K_{c} is of the order $\log n / n^{2}$ rather than $1 / n$.

So let us compare our data with theory. The upper curve of the top panel in Figure 4 shows $\max \mathcal{C}_{n}-A \log n$
0.00016
0.00014
0.00012
0.0001,

FIG. 3: (Color online) Top: $\mathcal{F}_{n}\left(K_{c}\right)-F_{c}$ vs $1 / n^{2}$. Bottom: $\mathcal{U}_{n}\left(K_{c}\right)-U_{c}$ vs $1 / n$.
versus $1 / n$. A straight line fitted through the last two points $(n=256,320)$ gives $0.201274-0.377915 x$, where $x=1 / n$. Our constant deviates in the fourth decimal from the $B_{\max }$ given in [18]. The lower curve shows $\mathcal{C}_{n}\left(K_{c}\right)-A \log n$ together with its similarly fitted line $0.138149-0.170816 x$, a near-perfect match with the constant prescribed above. The bottom panel of Figure 4 shows how K_{n}^{*} differs from K_{c}. A straight line fitted through the origin and the last point $(n=320)$ gives $-0.157888 x$, again a small deviation. In the plot we use the line $-0.15878 x$, a very good fit.

VIII. THE ENTROPY AND ITS DERIVATIVES

In this section we will do a more thorough investigation of the entropy as defined in Equation 23. To obtain limit curves we will need to translate between relative energy ν and coupling K. This is done with the relation $\nu=\mathcal{U}(K) / 2$ where $\mathcal{U}(K)$ is Onsager's formula and this also gives us the critical energy $\nu_{c}=1 / \sqrt{2} \approx 0.7071$. The plots in Figures 5 and 6 shows the entropy and its derivatives with respect to the relative energy ν. By definition we have $\mathcal{S}=\mathcal{F}-K \mathcal{U}$. If we then associate $\mathcal{S}(K)$ with $\nu(K)$ then we can plot a limit curve of the entropy versus

FIG. 4: (Color online) Top: $\max \mathcal{C}_{n}-A \log n$ and $\mathcal{C}_{n}\left(K_{c}\right)-$ $A \log n$ vs $1 / n$. Bottom: $K_{n}^{*}-K_{c}$ vs $1 / n$.
the relative energy. By definition, we also have

$$
K=\frac{-1}{2} S^{\prime}(\nu)
$$

and since

$$
\mathcal{C}=K^{2} \frac{\partial \mathcal{U}}{\partial K}=\left(\frac{-1}{2} S^{\prime}(\nu)\right)^{2} \frac{1}{\partial K / \partial \mathcal{U}}
$$

it follows that

$$
\mathcal{C}(\nu)=\frac{1}{4}\left(S^{\prime}(\nu)\right)^{2} \frac{1}{\frac{-1}{2} S^{\prime \prime}(\nu) \partial \nu / \partial \mathcal{U}}=\frac{-\left(S^{\prime}(\nu)\right)^{2}}{S^{\prime \prime}(\nu)}
$$

though this is of course only valid for an infinite grid. We can use this last formula though to give us a limit curve for the second derivative of the entropy, i.e. asyptotically we have

$$
S^{\prime \prime}(\nu)=\frac{-4}{\mathcal{U}^{\prime}(K)}
$$

which is then plotted versus the energy $\nu(K)$. Continuing in the same spirit with the third derivative we obtain the limit

$$
S^{(3)}(\nu)=\frac{8 \mathcal{U}^{\prime \prime}(K)}{\left(\mathcal{U}^{\prime}(K)\right)^{3}}
$$

FIG. 5: $S_{320}(\nu)$ and $S_{320}^{\prime}(\nu)$.

These last two formulae are used in the plots of Figure 6.
Figure 6 shows how the second and third derivative behaves near ν_{c}. Apparently the second derivative approaches 0 from below. Since the specific heat goes to infinity as $K \rightarrow K_{c}$ for an infinite grid, which corresponds to $\nu \rightarrow \nu_{c}=1 / \sqrt{2}$, while $S^{\prime} \rightarrow-2 K_{c}$ it is clear that $S^{\prime \prime} \rightarrow 0$ at that point also. Actually, the formula above suggests the following rough estimate

$$
S_{n}^{\prime \prime}\left(\nu_{c}\right)=\frac{-\left(S_{n}^{\prime}\left(\nu_{c}\right)\right)^{2}}{\mathcal{C}_{n}\left(K_{c}\right)} \sim \frac{-4 K_{c}^{2}}{A \log n}=\frac{-\pi}{2 \log n}
$$

and of course the same result for the maximum $S_{n}^{\prime \prime}$. Figure 8 gives that this could be a reasonable estimate for very large grids though not for $n<1000$. In fact, the maximum has only started to approach zero when $n=32$.

In Figure 7 we see how the entropy at the critical point ν_{c} and its derivative approaches their limits S_{c} and $-2 K_{c}$ respectively. Beginning with the entropy $S_{n}\left(\nu_{c}\right)$ one might expect that its behaviour would be similar to that of the free energy. However, whereas the difference between the free energy and its critical value is of the
order $1 / n^{2}$ the corresponding difference for the entropy seems to be slightly larger, possibly $n^{-9 / 5}$. For the derivative this difference seems to be of the order of $n^{-5 / 4}$. In the top panel of Figure 7 the difference $S_{n}\left(\nu_{c}\right)-S_{c}$ versus $n^{-9 / 5}$ is displayed together with the straight line $-1.91 x$. The bottom panel shows $S_{n}^{\prime}\left(\nu_{c}\right)+2 K_{c}$ versus $n^{-5 / 4}$ together with $0.425 x$.

The top panel of Figure 8 shows $\max S_{n}^{\prime \prime}$ versus $1 / \log n$ with the fitted polynomial $-1.56 x+0.32 x^{2}+5.4 x^{3}$ and the straight line $-\pi x / 2$. A similar behaviour is of course found for $S_{n}^{\prime \prime}\left(\nu_{c}\right)$ but is better fitted by the polynomial $-1.56 x+0.17 x^{2}+4.3 x^{3}$. The bottom panel shows $\nu_{n}^{*}-\nu_{c}$ versus $n^{-5 / 6}$ and the line $-0.44 x$, fitted through the origin and the last point. It should also be stated that the fourth derivative at ν^{*} obviously grows to the negative infinity, see the bottom plot of Figure 6 and the corresponding column in Table II. Its growth rate seems to be on the order of $n^{19 / 15}$ or thereabout. Assuming this, a straight line fitted through the last four points gives that the fourth derivative at ν_{n}^{*} is $-65-1.03 n^{19 / 15}$, see top plot of Figure 9. The bottom plot shows $K_{n}\left(\nu^{*}\right)-K_{c}$ for each grid versus $n^{-21 / 20}$ and the line $-0.249 x$.

n	$S_{n}\left(\nu_{c}\right)$	$-S_{n}^{\prime}\left(\nu_{c}\right)$	$-S_{n}^{\prime \prime}\left(\nu_{c}\right)$	$-\max S_{n}^{\prime \prime}$	$-S_{n}^{(4)}\left(\nu_{n}^{*}\right)$	ν_{n}^{*}
12	0.289122	0.855602	0.328177	0.242751	87.6930	0.652778
16	0.295499	0.864776	0.340533	0.275587	95.2653	0.664062
20	0.298843	0.869474	0.341183	0.288223	104.431	0.675000
24	0.300829	0.872249	0.338620	0.293102	119.379	0.677083
28	0.302111	0.874054	0.334909	0.294729	132.302	0.681122
32	0.302991	0.875309	0.330880	0.294656	146.386	0.683594
36	0.303622	0.876225	0.326890	0.293712	161.361	0.685185
40	0.304091	0.876920	0.323030	0.292304	175.026	0.687500
44	0.304450	0.877463	0.319365	0.290661	189.577	0.689050
48	0.304732	0.877897	0.315910	0.288886	204.967	0.690104
52	0.304957	0.878252	0.312658	0.287076	221.071	0.690828
56	0.305139	0.878546	0.309620	0.285273	236.062	0.691964
60	0.305290	0.878793	0.306759	0.283497	251.792	0.692778
64	0.305416	0.879004	0.304070	0.281763	268.220	0.693359
68	0.305522	0.879186	0.301537	0.280082	283.638	0.694204
72	0.305612	0.879344	0.299146	0.278455	299.752	0.694830
76	0.305690	0.879482	0.296885	0.276878	316.558	0.695291
80	0.305757	0.879604	0.294745	0.275359	333.999	0.695625
96	0.305954	0.879974	0.287189	0.269811	402.297	0.697266
112	0.306077	0.880224	0.280900	0.265004	473.012	0.698501
128	0.306161	0.880403	0.275552	0.260798	547.528	0.699341
160	0.306263	0.880639	0.266858	0.253768	703.101	0.700625
256	0.306381	0.880962	0.249667	0.239297	1219.53	0.702759
320	0.306411	0.881060	0.242063	0.232702	1603.41	0.703496

TABLE II: Entropy data.

IX. THE LOG-CONCAVITY POINT

Here we take a quick look at a finite-size phenomena which occurs at high energies. If we consider the plot in Figure 10 of the coupling $K_{16}(\nu)=-S_{16}^{\prime}(\nu) / 2$ we note an irregular behaviour at about $\nu \approx 0.87$. For larger grids this will move closer to 1 .

This is the energy where the sequence a_{i} stops being log-concave. We will define this point as the largest $\nu=i / 2 n^{2}$ such that $a_{i-4} a_{i+4} \leq a_{i}^{2}$ and denote it by $\tilde{\nu}_{n}$. The table in Figure 10 shows where this energy is located. In Figure 11 we see $1-\tilde{\nu}_{n}$ versus $n^{-19 / 15}$ together with the line $3.96 x$. The coupling $K_{n}=-S_{n}^{\prime} / 2$ corresponding to this energy is displayed in the bottom plot with the line (through $n=256,320$) $0.030+0.155 x$.

That K in this case grows as $O(\log n)$ is perhaps not very surprising. Note that for high energies we know the sequence of a_{i}. Counting backwards from $i=2 n^{2}$ the $a_{i}{ }^{-}$ sequence begins $2,0,2 n^{2}, 4 n^{2}, n^{4}+9 n^{2}, \ldots$ It seems also that the largest value of $\frac{1}{4} \log \frac{a_{i}}{a_{i+4}}$ is obtained for $i=$ $2 n^{2}-16$ giving the coupling value $\frac{1}{4} \log \frac{n^{2}+9}{4} \sim \frac{1}{2} \log n$.

FIG. 7: (Color online) Top: $S_{n}\left(\nu_{c}\right)-S_{c}$ vs $n^{-9 / 5}$. Bottom: $S_{n}^{\prime}\left(\nu_{c}\right)+2 K_{c}$ vs $n^{-5 / 4}$.

X. THE LARGEST COEFFICIENT

In this section we will take a look at the largest coefficient of the partition function. For all grids we have looked at, this position is held by coefficient a_{0}. However, a proof that this is generally true is still lacking. It seems fairly safe though to assume, as we will here, that $\max _{i} a_{i}=a_{0}$. We begin by setting up two easy bounds. First, obviously we have

$$
a_{0} \leq \sum_{i} a_{i}=2^{n^{2}}
$$

Second, the energy levels can take the values $0, \pm 4, \ldots, \pm\left(2 n^{2}-8\right), \pm 2 n^{2}$, i.e. there are $n^{2}-1$ energies. If we distribute the mass $2^{n^{2}}$ on these levels then some coefficient must be at least the average, i.e.

$$
\frac{2^{n^{2}}}{n^{2}} \leq \frac{2^{n^{2}}}{n^{2}-1} \leq a_{0}
$$

It would seem appropriate to guess that a_{0} is of the intermediate order $2^{n^{2}} / n$. As we will see, mutatis mutandis, this is just about perfect. The correct quantity to study is

$$
Q_{n}=\frac{a_{0}}{\binom{n^{2}}{n^{2} / 2}}
$$

FIG. 8: (Color online) Top: $\max S_{n}^{\prime \prime}$ vs $1 / \log n$. Bottom: $\nu_{n}^{*}-\nu_{c}$ vs $n^{-5 / 6}$.
where, by Stirling's formula,

$$
\binom{n^{2}}{n^{2} / 2} \sim \sqrt{\frac{2}{\pi}} \frac{2^{n^{2}}}{n}
$$

that is, the guess from above.
The table and the plot in Figure 12 gives rather strong evidence that $Q_{n} \rightarrow \sqrt{2}$. They are well fitted by the line $\frac{7}{8} \sqrt{2} x$. To conclude, we conjecture that

$$
a_{0}=\frac{2}{\sqrt{\pi}} \frac{2^{n^{2}}}{n}\left(1+\frac{7}{8 n^{2}}+O\left(\frac{1}{n^{3}}\right)\right)
$$

XI. ASYMPTOTICS

Here we collect all statements on asymptotic behaviour which are spread out through the text. Exact formulae for the first four are given elsewhere in the article.

$$
\begin{aligned}
S_{n}\left(\nu_{c}\right)-S_{c} & \sim-1.91 n^{-9 / 5} \\
S_{n}^{\prime}\left(\nu_{c}\right)+2 K_{c} & \sim 0.425 n^{-5 / 4} \\
S_{n}^{\prime \prime}\left(\nu_{c}\right) & \approx \frac{-1.56}{\log n}+\frac{0.17}{\log ^{2} n}+\frac{4.3}{\log ^{3} n} \\
\max S_{n}^{\prime \prime}(\nu) & \approx \frac{-1.56}{\log n}+\frac{0.32}{\log ^{2} n}+\frac{5.4}{\log ^{3} n} \\
\max S_{n}^{\prime \prime}(\nu) & \sim S_{n}^{\prime \prime}\left(\nu_{c}\right) \sim \frac{-\pi}{2 \log n} \\
S_{n}^{(4)}\left(\nu_{n}^{*}\right) & \sim-1.03 n^{19 / 15}
\end{aligned}
$$

n	$\tilde{\nu}_{n}$	$K_{n}\left(\tilde{\nu}_{n}\right)$
32	0.949219	0.583526
40	0.962500	0.616059
48	0.970486	0.642342
64	0.979492	0.683126
80	0.984375	0.714141
96	0.987847	0.743054
112	0.989796	0.763426
128	0.991455	0.784164
160	0.993594	0.818101
256	0.996460	0.888827
320	0.997344	0.923393

FIG. 10: (Color online) Top: Data on $\tilde{\nu}_{n}$. Bottom: $K_{n}(\nu)$ for $n=16$ and $n=\infty$.

$$
\begin{aligned}
K_{n}\left(\nu_{n}^{*}\right)-K_{c} & \sim-0.249 n^{-21 / 20} \\
\nu_{n}^{*}-\nu_{c} & \sim-0.442 n^{-5 / 6} \\
1-\tilde{\nu}_{n} & \sim 3.96 n^{-19 / 15} \\
K_{n}\left(\tilde{\nu}_{n}\right) & \sim 0.155 \log n \\
a_{0} & =\frac{2}{\sqrt{\pi}} \frac{2^{n^{2}}}{n}\left(1+\frac{7}{8 n^{2}}+O\left(\frac{1}{n^{3}}\right)\right)
\end{aligned}
$$

APPENDIX A: CHEBYSHEV POLYNOMIALS

We will now develop some facts about Chebyshev polynomials that we make use of in the main body of the paper. For further information we recommend [19]. We begin with some basics:

Definition A.1. The Chebyshev polynomials of the first kind are defined as
$\mathrm{T}_{n}(x)=\cos (n \arccos x)=\cos n \theta, \quad x=\cos \theta$,
and

FIG. 11: (Color online) Top: $1-\tilde{\nu}_{n}$ vs $n^{-19 / 15}$. Bottom: $K_{n}\left(\tilde{\nu}_{n}\right)$ vs $\log n$.

Definition A.2. The Chebyshev polynomials of the second kind are defined as

$$
\begin{aligned}
\mathrm{U}_{n-1}(x) & =\frac{\sin (n \arccos x)}{\sqrt{1-x^{2}}}=\frac{1}{n} \mathrm{~T}_{n}^{\prime}(x)=\frac{\sin n \theta}{\sin \theta} \\
x & =\cos \theta
\end{aligned}
$$

A useful fact which follows directly from the definition is that

$$
T_{n}(\cos (x))=\cos (n x)
$$

Since $\mathrm{T}_{n}(x)=\cos n \theta$ and $\cos n \theta_{j}=0$ for

$$
\theta_{j}=\theta_{j}^{(n)}=\frac{(2 j-1) \pi}{2 n}, \quad j=1, \ldots, n
$$

we see that the points

$$
\xi_{j}=\xi_{j}^{(n)}=\cos \theta_{j}^{(n)}=\cos \frac{(2 j-1) \pi}{2 n}, \quad j=1, \ldots, n
$$

satisfy

$$
\mathrm{T}_{n}\left(\xi_{j}\right)=0, \quad j=1, \ldots, n
$$

n	Q_{n}
32	1.415424
40	1.414988
48	1.414751
64	1.414516
80	1.414407
96	1.414348
112	1.414312
128	1.414289
160	1.414262
256	1.414232
320	1.414226

FIG. 12: (Color online) Top: Data on Q_{n}. Bottom: $Q_{n}-\sqrt{2}$ vs $1 / n^{2}$.

From this we can factor $T_{n}(x)$ as

$$
\begin{equation*}
T_{n}(x)=2^{n-1} \prod_{j=1}^{n}\left(x-\cos \frac{(2 j-1) \pi}{2 n}\right) \tag{A2}
\end{equation*}
$$

and $U_{n}(x)$ as

$$
\begin{equation*}
U_{n}(x)=2^{n} \prod_{j=1}^{n}\left(x-\cos \frac{j \pi}{n+1}\right) \tag{A3}
\end{equation*}
$$

1. Extremal points

It is also clear from A 1 that $\left|\mathrm{T}_{n}(x)\right| \leq 1$ if $|x| \leq 1$. The points in this interval, when $\left|T_{n}(x)\right|=1$, are called the extrema of $T_{n}(x)$. We know that $\cos k \pi=(-1)^{k}$ for any integer k so if

$$
\phi_{k}=\phi_{k}^{(n)}=\frac{k \pi}{n}, \quad k=0,1, \ldots, n
$$

the points

$$
\eta_{k}=\eta_{k}^{(n)}=\cos \phi_{k}^{(n)}=\cos \frac{k \pi}{n}, \quad k=0,1, \ldots, n
$$

satisfy

$$
T_{n}\left(\eta_{k}\right)=(-1)^{k}, \quad k=0,1, \ldots, n
$$

This gives us the following products on closed form

$$
\begin{equation*}
\prod_{k=1}^{n} 2\left(x-\cos \frac{2 \pi k}{n}\right)=2\left(\mathrm{~T}_{n}(x)-1\right) \tag{A4}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{k=1}^{n} 2\left(x-\cos \frac{\pi(2 k-1)}{n}\right)=2\left(\mathrm{~T}_{n}(x)+1\right) \tag{A5}
\end{equation*}
$$

2. The coefficients

$$
\begin{aligned}
& \text { If }|t|<1 \text { then } \\
& \begin{aligned}
& \sum_{n \geq 0} t^{n} e^{i n \theta}= \sum_{n \geq 0}\left(t e^{i \theta}\right)^{n}=\frac{1}{1-t e^{i \theta}}= \\
& \quad=\frac{1}{1-t(\cos n \theta+i \sin n \theta)}= \\
&=\frac{1-t \cos n \theta+t i \sin n \theta}{(1-t \cos n \theta)^{2}+t^{2} \sin n \theta}=\frac{1-t \cos n \theta+t i \sin n \theta}{1-2 t \cos n \theta+t^{2}}
\end{aligned}
\end{aligned}
$$

On equating the real parts we obtain

$$
\sum_{n \geq 0} t^{n} \cos n \theta=\frac{1-t \cos \theta}{1+t^{2}-2 t \cos \theta}
$$

or

$$
\frac{1-t x}{1-2 t x+t^{2}}=\sum_{n \geq 0} t^{n} \mathrm{~T}_{n}(x)
$$

the generating function for $\mathrm{T}_{n}(x)$. Using the definition we find the generating function for $\mathrm{U}_{n}(x)$,

$$
\frac{1}{1-2 t x+t^{2}}=\sum_{n \geq 0} t^{n} \mathrm{U}_{n}(x)
$$

From this we obtain the following lemma:
Lemma A.3. The polynomials $2 \mathrm{~T}_{n}(x / 2)$ and $\mathrm{U}_{n}(x / 2)$ have integer coefficients.

Proof. Using the generating function for $\mathrm{U}_{n}(x / 2)$ we have:

$$
\begin{aligned}
& \frac{1}{1-2 t \frac{x}{2}+t^{2}}= \frac{1}{1-t x+t^{2}}=\frac{1}{1-t(x-t)}= \\
& \quad=\sum_{k \geq 0}(t(x-t))^{k}=\sum_{k \geq 0} t^{k}(x-t)^{k}
\end{aligned}
$$

and for fixed n the coefficients for t^{n} are polynomials in x with integer coefficients. Multiplying by $1-t \frac{x}{2}$ gives the result for $2 \mathrm{~T}_{n}(x / 2)$.

We can use the formula in the proof above to explicit give the coefficients for the Chebychev polynomials as:

$$
\begin{aligned}
& \mathrm{T}_{n}(x)=\frac{1}{2} \sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} \frac{n}{n-k}\binom{n-k}{k}(2 x)^{n-2 k} \\
& \mathrm{U}_{n}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k}(2 x)^{n-2 k}
\end{aligned}
$$

3. The Irreducible factors

We will now describe the irreducible factors of the Chebyshev polynomials. We will state the results without proofs, which the interested reader can find in [19].

Rather than factoring the Chebyshev polynomials themselves we will give the irreducible factors of $C_{k}(x)=$ $2 \mathrm{~T}_{k}(x / 2)$ and $S_{k}(x)=\mathrm{U}_{k}(x / 2)$, for $k>0$. From Lemma A. 3 we know that these polynomials are monic and have integer coefficients.

Given an odd divisor h of k let
$F_{h, k}(x)=\prod_{\operatorname{gcd}(2 j-1,2 k)=h, 1 \leq j \leq k}\left(x-2 \cos \left(\frac{(2 j-1) \pi}{2 k}\right)\right)$.
Now $F_{h, k}(x)$ will be an irreducible monic polynomial with integer coefficients and

$$
C_{k}(x)=\prod_{h \mid k, h \text { odd }} F_{h, k}(x)
$$

Given a divisor h of $2(k+1)$ let

$$
G_{h, k}(x)=\prod_{\operatorname{gcd}(j, 2(k+1))=h, 1 \leq j \leq k}\left(x-2 \cos \left(\frac{j \pi}{k+1}\right)\right)
$$

Here $G_{h, k}(x)$ will be an irreducible monic polynomial with integer coefficients and

$$
S_{k}(x)=\prod_{h \mid(2(k+1)), 1 \leq h \leq k} G_{h, k}(x)
$$

4. Two useful identities

We will also need the following facts about the Chebyshev polynomials:

Lemma A.4. Let $\mathrm{T}_{n}(x)$ and $\mathrm{U}_{n}(x)$ be the Chebyshev polynomials of the first and second kind. Then for $n \geq 1$ we have the following.
For even indices of $\mathrm{T}_{n}(x)$:

$$
\begin{aligned}
2\left(\mathrm{~T}_{2(n+1)}(x)-1\right) & =4\left(x^{2}-1\right) \mathrm{U}_{n}^{2}(x) \\
2\left(\mathrm{~T}_{2 n}(x)+1\right) & =4 \mathrm{~T}_{n}^{2}(x)
\end{aligned}
$$

and for odd indices of $\mathrm{T}_{n}(x)$:

$$
\begin{aligned}
& 1+\mathrm{T}_{2 n+1}(x)=(1+x)\left(\mathrm{U}_{n}(x)-\mathrm{U}_{n-1}(x)\right)^{2} \\
& 1-\mathrm{T}_{2 n+1}(x)=(1-x)\left(\mathrm{U}_{n}(x)+\mathrm{U}_{n-1}(x)\right)^{2}
\end{aligned}
$$

Proof. Even indices:

$$
\begin{aligned}
& 2\left(\mathrm{~T}_{2(n+1)}(x)-1\right)=2^{2(n+1)} \prod_{k=1}^{2(n+1)}\left(x-\cos \frac{2 \pi k}{2(n+1)}\right)= \\
& \begin{aligned}
& 2^{n} \prod_{k=1}^{n}\left(x-\cos \frac{\pi k}{n+1}\right) 2^{n} \prod_{k=n+2}^{2 n+1}\left(x-\cos \frac{\pi k}{n+1}\right) \times 2^{2}\left(x-\cos \frac{\pi(n+1)}{(n+1)}\right)\left(x-\cos \frac{2 \pi(n+1)}{(n+1)}\right)= \\
&=4\left(x^{2}-1\right) \mathrm{U}_{n}^{2}(x) 2\left(\mathrm{~T}_{2 n}(x)+1\right)=2^{2 n} \prod_{k=1}^{2 n}\left(x-\cos \frac{\pi(2 k-1)}{2 n}\right)= \\
&=4 \cdot 2^{n-1} \prod_{k=1}^{n}\left(x-\cos \frac{\pi(2 k-1)}{2 n}\right) 2^{n-1} \prod_{k=n+1}^{2 n}\left(x-\cos \frac{\pi(2 k-1)}{2 n}\right)=4 \mathrm{~T}_{n}^{2}(x)
\end{aligned}
\end{aligned}
$$

Odd indices:

$$
\begin{gathered}
(1 \pm x)\left(\mathrm{U}_{n}(x) \mp \mathrm{U}_{n-1}(x)\right)^{2}=(1 \pm x)\left(\mathrm{U}_{n}^{2}(x)+\mathrm{U}_{n-1}^{2}(x) \mp 2 \mathrm{U}_{n}(x) \mathrm{U}_{n-1}(x)\right)= \\
=\frac{1 \pm x}{1-x^{2}}\left(\left(1-\mathrm{T}_{n+1}^{2}(x)\right)+\left(1-\mathrm{T}_{n}^{2}(x)\right) \mp 2 \frac{1}{2}\left(T_{1}(x)-T_{2 n+1}(x)\right)\right)= \\
=\frac{1 \pm x}{1-x^{2}}\left(2-\frac{1}{2}\left(\mathrm{~T}_{2 n+2}(x)+1\right)-\frac{1}{2}\left(\mathrm{~T}_{2 n}(x)+1\right) \mp x \pm \mathrm{T}_{2 n+1}(x)\right)= \\
=\frac{1 \pm x}{1-x^{2}}\left((1 \mp x)-\frac{1}{2}\left(\mathrm{~T}_{2 n+2}(x)+\mathrm{T}_{2 n}(x)\right) \pm \mathrm{T}_{2 n+1}(x)\right)= \\
=\frac{1 \pm x}{1-x^{2}}\left((1 \mp x)-\frac{1}{2}\left(2 x \mathrm{~T}_{2 n+1}(x)-\mathrm{T}_{2 n}(x)+\mathrm{T}_{2 n}(x)\right) \pm \mathrm{T}_{2 n+1}(x)\right)= \\
=\frac{1 \pm x}{1-x^{2}}\left((1 \mp x)-x \mathrm{~T}_{2 n+1}(x) \pm \mathrm{T}_{2 n+1}(x)\right)= \\
=\frac{1 \pm x}{1-x^{2}}\left((1 \mp x)+(1 \mp x) \mathrm{T}_{2 n+1}(x)\right)= \\
=\frac{(1+x)(1-x)}{1-x^{2}}\left(1 \pm \mathrm{T}_{2 n+1}(x)\right)=1 \pm \mathrm{T}_{2 n+1}(x)
\end{gathered}
$$

APPENDIX B: AN IMPLEMENTATION IN MATHEMATICA

In this appendix we demonstrate a Mathematica program which implements some of the calculations discussed in the main text. This implementation works for grids with even side n and uses numerical evaluation at the stage where γ_{t} is eliminated. The only optimisation from the paper used here is our formulation of the products in terms of Chebyshev polynomials. For sides less than about $n=80$ it is actually faster to use a direct numerical evaluation of the cosine-terms before the multiplication is performed. However once we get to around $n=80$ the need for high precision numerics makes that numerical version slower than the version shown here.

A notebook demonstrating the Galois method is also available at the papers homepage at http://abel.math. umu.se/Combinatorics/ising.html

Let us start with the definition of the functions we will use later to compute our three products P_{1}, P_{2} and P_{4}.

```
Multiply[p_,c_]:=
(* Applying the product rule for gamma_t *)
Module[{i,j,m,b},
    FixedPoint[
        Expand[#]
            /.{
            Power[c[i_, m_],b_]:>
            (c[i,m])^Mod[b,2]*(2+c[2i,m])^Floor[b/2]/;b>=2,
            c[i_, m_ ]*c[j_, m_] :>c[i+j,m]+c[i-j,m]}&,
```

p]
]

SymReduce[p_, c_]:= (* Reducing by symmetries *) Module[\{i,m\},
p
/.c[in, $\left.\mathrm{m}_{-}\right]:>c[-\mathrm{i}, \mathrm{m}] / ; i<0$
$/ / . c\left[i_{-}, m_{-}\right]:>c[i-2 m, m] / i>2 m$
$/ . c\left[i_{-}, m_{-}\right]:>c[2 m-i, m] / ; i>m$
$/ . c\left[i_{-}, m_{-}\right]:>-c[m-i, m] / ; 2 i>m$
/.\{
$c\left[i_{-}, m_{-}\right]:>0 / ; 2 i==m, c\left[i_{-}, m_{-}\right]:>1 / ; 3 i==m$,
$c\left[i_{-}, m_{-}\right]:>-1 / ; 3 i==2 m, c\left[m_{-}, m_{-}\right]->-2, c\left[0, l_{-}\right]->2$ \}
]
RemoveCos $\left[p_{-}, c_{-}\right.$, acc_] :=
Module[\{i,j,x\},
$p / . c\left[i_{-}, j_{-}\right]:>N[2 * \operatorname{Cos}[i * P i / j], a c c] / . x_{-} R e a l:>R o u n d[x]$
]
TakeProduct[polys_, $\left.e_{-}, Y_{-}, c_{-}, z_{-}, a c c_{-}\right]:=$
Module[\{a,b,prod\},
prod=Fold[SymReduce[Multiply[\#1*\#2, c], c]\&,1,polys];
Cancel[b^e*RemoveCos[prod, c, acc]/.Y->a^2/b] $/ .\left\{a->\left(1+z^{\wedge} 2\right), b->z\left(1-z^{\wedge} 2\right)\right\}$
]
The function Multiply implements the multiplication and squaring rules for γ_{t}. SymReduce uses the symmetries of \cos to reduce the number of γ_{t}-variables needed. RemoveCos uses high precision floating point arithmetic (of accuracy acc) to evaluate the cos-functions and then rounds the answer to the nearest integer. Finally, TakeProduct takes a list of polynomials in the variables Y and c (where c $[i, j]$ represents $2 \cos \frac{i \pi}{j}$), multiply them together, evaluates the cos-functions, using RemoveCos, and finally does the substitution $Y \rightarrow \frac{\left(1+z^{2}\right)^{2}}{z\left(1-z^{2}\right)}$ while multiplying with a high enough power of $z\left(1-z^{2}\right)$.

To be able to check the result later we also need the function $U(K)$ defined as follows:
U[K_]=FullSimplify[

```
Coth[2K](1+2/Pi*EllipticK[z^2](2*Tanh[2K]^2-1))
    /.z->2*Sinh[2K]/Cosh[2K]^2,Element [K,Reals]
```

];

Let us do a worked example of how to use these functions to compute a partition function and check the result. We begin by defining the size of our square grid:

```
(************ Input *************)
n=50;
```

This is the only parameter we need to set ourself, everything else can now be calculated from this. We next calculate some constants and the two polynomials $\mathrm{U}_{p-1}\left(\frac{X_{t}}{2}\right)$ and $2 \mathrm{~T}_{p}\left(\frac{X_{t}}{2}\right)$ for a general t.

```
(**************** I ***************)
p=n/2;
acc=Floor [N[p^2*Log[10,2]]];
U[Y_, t_]=
    SymReduce[Multiply[ChebyshevU[p-1, (Y-a[t,n])/2] , a] , a];
T[Y_, t_]=
    SymReduce[Multiply[2*ChebyshevT[p,(Y-a[t,n])/2] , a] , a];
```

We can now calculate A_{1}, making use of our functions TakeProduct and SymReduce. This is done in two steps since we need to multiply with the appropriate "prefactors". In this case $p^{2}-1$ is a large enough power of $z\left(1-z^{2}\right)$.

```
(*************** A1) **************)
Module[{A1prod,A1},
    A1prod=TakeProduct[
        Table[SymReduce[U[Y,2i],a],{i,0,p}]
        ,p^2-1,Y,a,z,acc
    ];
    A1=Expand[
        (1+\mp@subsup{z}{}{\wedge}2)^2(-1-2z+z^2) (-1+2z+\mp@subsup{z}{}{\wedge}2)*A1prod^2
    ];
    Z=A1;
]
```

We now calculate A_{2} in much the same way as A_{1}. The differences are the prefactors and that now the power of $z\left(1-z^{2}\right)$ is $p^{2}-p$ for the bulk of the polynomials and $n=2 p$ for the factors. We also add $2 A_{2}$ to Z since $A_{2}=A_{3}$ for a square grid and we do not want to waste precious time calculating A_{3} separately.

```
(*************** A2) *************)
Module[{A2prod,A2pre,A2},
    A2prod=TakeProduct[
        Table[SymReduce[T[Y,2i],a],{i,1,p-1}],
        p^2-p,Y,a,z,acc
    ];
    A2pre=TakeProduct [
        {SymReduce[T[Y, n] , a] ,SymReduce[T[Y, 0] , a]},
        n,Y,a,z,acc
    ];
    A2=Expand [A2pre*A2prod 2];
    Z=Z+2*A2;
]
```

A_{4} is the simplest term to calculate since it does not need any prefactors and such. The power of $z\left(1-z^{2}\right)$ is p^{2} 。
$(* * * * * * * * * * * * * * * ~ A 4) ~ * * * * * * * * * * * *) ~$
Module[\{A4prod,A4\},
A4prod=TakeProduct[Table[SymReduce[T[Y,2i+1], a], \{i, 0,p-1\}], $\mathrm{p}^{\wedge} 2, \mathrm{Y}, \mathrm{a}, \mathrm{z}, \mathrm{acc}$
];
A4=Expand[A4prod~2];
$\mathrm{Z}=$ Expand $[(\mathrm{Z}+\mathrm{A} 4) / 2]$;
]
Finally we verify the correctness of our resulting polynomial by calculating the moment generating function for the distributions of energies and compare it with the infinite grid.

```
(*************** Check **************)
s1=Simplify/@Integrate[Series[U[K],{K,0,n-1}],K];
s2=Simplify/@Series[Exp[n^2*s1],{K,0,n-1}];
s3=Simplify/@Series[Z/(2z)^(n^2)/.z->Exp[K]^2,{K,0,n-1}];
s2==s3
True
```

As you can see the two expressions are equal and it is unlikely that any computational errors have occurred.

In Table III we give timings for various grid sizes run on a Linux-machine with an Athlon 2000+ and 2GB RAM. We have also included timings of Beale's implementation, run on the same machine.

n	Our's	Beale's	Ratio
8	0.1	0.5	5
16	2.0	11.0	5.5
24	22.0	95.0	4.3
32	143.1	622.7	4.4
40	835.5	3010.5	3.6
48	2675.2	11223.9	4.2
56	8111.4	38118.9	4.7
64	20006.5	108331.3	5.4

TABLE III: Timing data.

ACKNOWLEDGMENTS

This work was supported by the Swedish Natural Science Research Council, The Göran Gustafsson Foundation, and the National Graduate School in Scientific Computing (NGSSC). We have used the computing facilities at Department of Mathematics Umeå University, HPC2N Umeå, NSC Linköping, and PDC Stockholm.
[1] W. Lenz, Physik. Z. 21, 613 (1920).
[2] E. Ising, Z. Physik 31, 253 (1925).
[3] L. Onsager, Phys. Rev. 65, 117 (1944).
[4] B. Kaufman, Phys. Rev. 76, 1232 (1949).
[5] P. Beale, Phys. Rev. 76, 78 (1996).
[6] P. Kasteleyn, in Graph theory and theoretical physics (Academic press, 1967).
[7] B. McCoy and T. Wu, The two-dimensional Ising model (Harvard University Press, 1973).
[8] B. Hartley and T. O. Hawkes, Rings, modules and linear algebra (Chapman \& Hall, London, 1980), ISBN 0-412-09810-5, a further course in algebra describing the structure of abelian groups and canonical forms of matrices through the study of rings and modules, a reprinting.
[9] A. Graham, Kronecker products and matrix calculus: with applications (Ellis Horwood Ltd., Chichester, 1981), ISBN 0-85312-391-8, ellis Horwood Series in Mathematics and its Applications.
[10] I. Stewart, Galois theory (Chapman and Hall Ltd., London, 1989), 2nd ed., ISBN 0-412-34540-4; 0-412-34550-1.
[11] C. P. Bonnington and C. H. C. Little, The foundations of topological graph theory (Springer-Verlag, New York, 1995), ISBN 0-387-94557-1.
[12] M. Laczkovich, Conjecture and proof (TypoTEX Kft. Elektronikus Kiadó, Budapest, 1998), ISBN 963-7546-88-X.
[13] D. E. Knuth, The art of computer programming. Vol. 2 (Addison-Wesley Publishing Co., Reading, Mass., 1981), 2nd ed., ISBN 0-201-03822-6, seminumerical algorithms, Addison-Wesley Series in Computer Science and Information Processing.
[14] D. H. Bailey, ACM Transactions on Mathematical Software (TOMS) 21(4), 379 (1995), ISSN 0098-3500.
[15] B. Cipra, Amer. Math. Monthly 94, 937 (1987).
[16] G. R. Grimmett and D. R. Stirzaker, Probability and random processes (The Clarendon Press Oxford University Press, New York, 1992), 2nd ed., ISBN 0-19-853666-6; 0-19-853665-8.
[17] D. Lavis and G. Bell, Statistical mechanics of lattice systems (Springer, 1999).
[18] A. Ferdinand and M. Fisher, Phys. Rev. 185, 832 (1969).
[19] T. J. Rivlin, Chebyshev polynomials, Pure and Applied Mathematics (John Wiley \& Sons Inc., New York, 1990), 2nd ed., ISBN 0-471-62896-4, from approximation theory to algebra and number theory.
[20] In the algebraic meaning of the word, not a physical field.
[21] An Euler subgraph is a subgraph where all vertices have even degree.

[^0]: *Electronic address: Roland.Haggkvist@math.umu.se
 ${ }^{\dagger}$ Electronic address: ar@theophys.kth.se
 \ddagger Electronic address: Daniel.Andren@math.umu.se
 ${ }^{\S}$ Electronic address: Petras.Kundrotas@csb.ki.se
 ${ }^{4}$ Electronic address: phl@kth.se
 ** Electronic address: Klas.Markstrom@math.umu.se

